Effect of Modifying with Nanofillers on Epoxy Composites Structure and Thermal Conductivity

Article Preview

Abstract:

In this work, it is proposed that the thermophysical properties of the composite material can be improved by modifying the binder with nanoscale additives. It is proved that the introduction of nanoparticles into oligomers at concentrations around 1% increases the thermal conductivity by 1.3–1.6 times. Macrosized particles were also used for comparison. It was found that this effect is achieved due to a decrease in thermal resistance at the interface in result of the formation of outer surface layers. Such modified binders are effective for creating various materials and coatings based on them with a wide range of characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1165)

Pages:

3-16

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.V. Buketov, S.A. Smetankin, A.V. Akimov, A.G. Kulinich, Epoxy composite modifications influence on the energy activation's of thermal destruction, Funct. Mater. 26 (2) (2019) 403-411.

Google Scholar

[2] A.V. Buketov, O.O. Sapronov, M.V. Brailo, Investigation of the physico-mechanical and thermophysical properties of epoxy composites with a two-component bidisperse filler, Strength Mater. 46 (5) (2014) 717-723.

DOI: 10.1007/s11223-014-9605-z

Google Scholar

[3] A. Buketov, O. Sapronov, M. Brailo, D. Stukhlyak, S. Yakushchenko, N. Buketova, A. Sapronova, V. Sotsenko, The use of complex additives for the formation of corrosion- and wear-resistant epoxy composites, Adv. Mater. Sci. Eng. 2019 (2019) 8183761 (1-5).

DOI: 10.1155/2019/8183761

Google Scholar

[4] O.V. Totosko, P.D. Stukhlyak, A.H. Mykytyshyn, V.V. Levytskyi, Investigation of electrospark hydraulic shock influence on adhesive-cohesion characteristics of epoxy coatings, Funct. Mater. 27 (4) (2020) 760-766.

DOI: 10.15407/fm27.04.760

Google Scholar

[5] A. Buketov, P. Stukhlyak, P. Maruschak, S. Panin, A. Menou, Physical and chemical aspects of formation of epoxy composite material with microfilling agent, Key Eng. Mater. 712 (2016) 143-148.

DOI: 10.4028/www.scientific.net/kem.712.143

Google Scholar

[6] A.Z. Skorokhod, I.S. Sviridova, V.N. Korzhik, The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it, Mech. Compos. Mater. 30 (4) (1994) 328-334.

DOI: 10.1007/bf00634755

Google Scholar

[7] L.I. Markashova, V.S. Volkov, O.S. Kushnareva, Structure and physicomechanical properties of welded joints of AISI 321 steel, Mater. Sci. 52 (2) (2016) 194-199.

DOI: 10.1007/s11003-016-9943-z

Google Scholar

[8] O.Y. Povstianoi, V.D. Rud, N.Y. Imbirovych, T.N. Halchuk, T.I. Chetverzhuk, M.V. Smal, A.V. Dziubynskyi, Optimization of the properties of multilayer porous permeable materials, Mater. Sci. 56 (4) (2021) 530-535.

DOI: 10.1007/s11003-021-00460-2

Google Scholar

[9] O. Totosko, P. Stukhlyak, M. Mytnyk, N. Dolgov, R. Zolotiy, D. Stukhlyak, Investigation of corrosion resistance of two-layer protective coatings, Chall. Natl. Defense Contemp. Geopolit. Situat. 2022 (1) (2022) 50-54.

DOI: 10.47459/cndcgs.2022.6

Google Scholar

[10] M. Brailo, A. Buketov, S. Yakushchenko, V. Vynar, O. Kobelnik, The investigation of tribological properties of epoxy-polyether composite materials for using in the friction units of means of sea transport, Mater. Perform. Char. 7 (1) (2018) 275-299.

DOI: 10.1520/mpc20170161

Google Scholar

[11] N. Imbirovych, O. Povstyanoy, O. Zaleta, S. Shymchuk, О. Priadko, The influence of synthesis regimes on operational properties of oxide ceramic coatings on an aluminum alloy, in: V. Ivanov, J. Trojanowska, I. Pavlenko, J. Zajac, D. Perakovic (Eds.), Advances in Design, Simulation and Manufacturing IV, Springer, Cham, 2021, pp.536-545.

DOI: 10.1007/978-3-030-77719-7_53

Google Scholar

[12] A.V. Akimov, A.V. Buketov, A.А. Sapronov, S.V. Yakushchenko, S.A. Smetankin, Development of polymer composites with improved thermophysical properties for shipbuilding and ship repair, Compos. Mech. Comput. Appl. 10 (2) (2019) 117-134.

DOI: 10.1615/compmechcomputapplintj.2018026989

Google Scholar

[13] V.N. Korzhik, Theoretical analysis of the conditions required for rendering metallic alloys amorphous during gas-thermal spraying. III. Transformations in the amorphous layer during the growth process of the coating, Powd. Metall. Met. Ceram. 31 (11) (1992) 943-948.

DOI: 10.1007/bf00797621

Google Scholar

[14] V.G. Prokopov, N.M. Fialko, G.P. Sherenkovskaya, V.L. Yurchuk, Yu.S. Borisov, A.P. Murashov, V.N. Korzhik, Effect of coating porosity on the process of heat transfer with gas-thermal deposition, Powd. Metall. Met. Ceram. 32 (2) (1993) 118-121.

DOI: 10.1007/bf00560034

Google Scholar

[15] N. Fialko, R. Dinzhos, J. Sherenkovskii, N. Meranova, R. Navrodska, D. Izvorska, V. Korzhyk, M. Lazarenko, N. Koseva, Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties, Eastern-European J. Enterp. Technol. 4/5 (112) (2021), 21-26.

DOI: 10.15587/1729-4061.2021.236915

Google Scholar

[16] G.M. Hryhorenko, L.I. Adeeva, A.Yu. Tunik, M.V. Karpets, V.N. Korzhyk, M.V. Kindrachuk, O.V. Tisov, Formation of microstructure of plasma-arc coatings obtained using powder wires with steel skin and B4C + (Cr,Fe)7С3 + Al filler, Metalphys. Novel Technol. 42 (9) (2020) 1265-1282.

DOI: 10.15407/mfint.42.09.1265

Google Scholar

[17] V. Korzhyk, V. Khaskin, A. Grynyuk, O. Ganushchak, S. Peleshenko, O. Konoreva, O. Demianov, V. Shcheretskiy, N. Fialko, Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium, Eastern-European J. Enterp. Technol. 4/12 (112) (2021) 6-17.

DOI: 10.15587/1729-4061.2021.238634

Google Scholar

[18] G.M. Grigorenko, L.I. Adeeva, A.Y. Tunik, V.N. Korzhik, M.V. Karpets, Plasma arc coatings produced from powder-cored wires with steel sheaths, Powd. Metall. Met. Ceram. 59 (5-6) (2020) 318-329.

DOI: 10.1007/s11106-020-00165-2

Google Scholar

[19] V. Kvasnytskyi, V. Korzhyk, V. Kvasnytskyi, H. Mialnitsa, C. Dong, T. Pryadko, M. Matviienko, Y. Buturlia, Designing brazing filler metal for heat-resistant alloys based on Ni3Al intermetallide, Eastern-European J. Enterp. Technol. 6/12 (108) (2020) 6-19.

DOI: 10.15587/1729-4061.2020.217819

Google Scholar

[20] L.I. Markashova, O.S. Kushnareva, Effect of structure on the mechanical properties of the metal of welded joints of aluminum alloys of the Al–Cu–Li system, Mater. Sci. 49 (5) (2014) 681-687.

DOI: 10.1007/s11003-014-9662-2

Google Scholar

[21] G.M. Grigorenko, L.I. Adeeva, A.Y. Tunik, V.N. Korzhik, Y.P. Titkov, A.A. Chaika, Structurization of coatings in the plasma arc spraying process using B4C + (Cr,Fe)7C3-cored wires, Powd. Metall. Met. Ceram. 58 (5-6) (2019) 312-322.

DOI: 10.1007/s11106-019-00080-1

Google Scholar

[22] Yu.S. Borisov, V.E. Oliker, E.A. Astakhov, V.N. Korzhik, Yu.A. Kunitskii, Structure and properties of gas-thermal coatings of Fe–B–C and Fe–Ti–B–C alloys, Powd. Metall. Met. Ceram. 26 (4) (1987) 313-318.

DOI: 10.1007/bf01184439

Google Scholar

[23] P.D. Stukhlyak, K.M. Moroz, Influence of porosity in the epoxy matrix–polyvinyl alcohol–disperse filler system on the impact toughness, Mater. Sci. 46 (4) (2011) 455-463.

DOI: 10.1007/s11003-011-9312-x

Google Scholar

[24] N.M. Fialko, V.G. Prokopov, N.O. Meranova, V.N. Korzhik, G.P. Sherenkovskaya, Thermal physics of gasothermal coatings formation processes: State of investigations, Phys. Chem. Mater. Treat. 4 (1993) 83-93.

Google Scholar

[25] N. Fialko, R. Dinzhos, J. Sherenkovskii, N. Meranova, V. Prokopov, V. Babak, V. Korzhyk, D. Izvorska, M. Lazarenko, V. Makhrovskyi, Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt, Eastern-European J. Enterp. Technol. 2/5 (116) (2022) 25-30.

DOI: 10.15587/1729-4061.2022.255830

Google Scholar

[26] N. Fialko, R. Dinzhos, J. Sherenkovskii, N. Meranova, S. Aloshko, D. Izvorska, V. Korzhyk, M. Lazarenko, I. Mankus, L. Nedbaievska, Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters, Eastern-European J. Enterp. Technol. 6/12 (114) (2021) 34-39.

DOI: 10.15587/1729-4061.2021.245274

Google Scholar

[27] P.D. Stukhlyak, Antifriction and adhesive properties of coatings of thermosetting plastics modified with thermoplastic polymers, J. Frict. Wear 7 (1) (1986) 138-141.

Google Scholar

[28] A.V. Buketov, M.V. Brailo, O.O. Sapronov, D.G. Kruglyj, E.S. Appazov, L. Dulebova, K.M. Klevtsov, Nanofilled antifriction polymeric composite materials for parts of friction units of sea and river transport, J. Nano- Electr. Phys. 12 (5) (2020) 05025 (1-6).

DOI: 10.21272/jnep.12(5).05025

Google Scholar

[29] I.H. Dobrotvor, P.D. Stukhlyak, A.V. Buketov, Investigation of the formation of external surface layers in epoxy composites, Mater. Sci. 45 (4) (2009) 582-588.

DOI: 10.1007/s11003-010-9217-0

Google Scholar

[30] I.G. Dobrotvor, P.D. Stukhlyak, A.G. Mykytyshyn, D.P. Stukhlyak, Influence of thickness and dispersed impurities on residual stresses in epoxy composite coatings, Strength Mater. 53 (2) (2021) 283-290.

DOI: 10.1007/s11223-021-00287-x

Google Scholar

[31] N. Dolgov, P. Stukhlyak, O. Totosko, O. Melnychenko, D. Stukhlyak, I. Chykhira, Analytical stress analysis of the furan epoxy composite coatings subjected to tensile test, Mech. Adv. Mater. Struc. 31 (25) (2023) 1-11.

DOI: 10.1080/15376494.2023.2239811

Google Scholar

[32] A.V. Lykov, Theory of Thermal Conductance, Higher School, Moscow, 1967.

Google Scholar