[1]
V. Mittal, Polymer layered silicate nanocomposites: A review, Materials 2 (3) (2009) 992-1057.
DOI: 10.3390/ma2030992
Google Scholar
[2]
A. Singh, Nanoparticles for environmental clean-up: An overview, Int. J. Appl. Chem. 12 (3) (2016) 175-181.
Google Scholar
[3]
J.T. Harris, A.J. McNeil, Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue, J. Polym. Sci. 58 (21) (2020) 3042-3049.
DOI: 10.1002/pol.20200590
Google Scholar
[4]
D.B. Tripathy, A. Gupta, Nanocomposites as sustainable smart materials: A review, J. Reinfor. Plastics Compos. https://doi.org/10.1177/07316844241233162 (2024) 1-26.
Google Scholar
[5]
N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez–Manchado, Recent advances in clay/polymer nanocomposites, Adv. Mater. 23 (2011) 5229-5236.
DOI: 10.1002/adma.201101948
Google Scholar
[6]
J. Sufiyan, A. Uromeihy, M.R. Nikudel, The importance of transition from micro to nano clay size in improving the engineering properties of sandy soils (poorly graded sand), Global J. Earth Sci. Eng. 2 (2) (2015) 41-46.
DOI: 10.15377/2409-5710.2015.02.02.3
Google Scholar
[7]
J.L. Suter, D. Groen, P.V. Coveney, Mechanism of exfoliation and prediction of materials properties of clay–polymer nanocomposites from multiscale modeling, Nano Lett. 15 (12) (2015) 8108-8113.
DOI: 10.1021/acs.nanolett.5b03547
Google Scholar
[8]
A. Vasudeo Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites, in: S. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Eds.), Synthesis of Inorganic Nanomaterials: Advances and Key Technologies, Woodhead Publ., Cambridge, 2018, Ch. 5, pp.121-139.
DOI: 10.1016/b978-0-08-101975-7.00005-1
Google Scholar
[9]
Z. Fu, P. Sun, Y. Huang, Y. Li., N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2-30.
Google Scholar
[10]
7 Scintillating Facts about the Earliest Known Use of Nanotechnology – the Lycurgus Cup (17 April 2020): https://interestingengineering.com/7-scintillating-facts-about-the-earliest-known-use-of-nanotechnology-the-lycurgus-cup.
Google Scholar
[11]
M. Sen, Nanocomposite materials, in: M. Sen (Ed.), Nanotechnology and the Environment, IntechOpen, 2020, http://dx.doi.org/10.5772/intechopen.93047, Ch. 6 (1-12).
Google Scholar
[12]
Polymer Nanocomposites Market Research Report – Global Forecast till 2034: https://www.marketresearchfuture.com/reports?utf8=%E2%9C%93&q=Polymer+Nanocomposites+Market+Research+Report%E2%80%94Global+Forecast+till+2034.
Google Scholar
[13]
S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641.
DOI: 10.1016/j.progpolymsci.2003.08.002
Google Scholar
[14]
S.N. Zhumagaliyeva, R.S. Iminovа, G.Z. Kairalapova, Beysebekov М.M., M.K. Beysebekov, Z.A. Abilov, Composite polymer-clay hydrogels based on bentonite clay and acrylates: Synthesis, characterization and swelling capacity, Eurasian Chem.-Technol. J. 19 (2017) 79-288.
DOI: 10.18321/ectj672
Google Scholar
[15]
S.B.A. Boraei, B. Bakhshandeh, F. Mohammadzadeh, D.M. Haghigh, Z. Mohammadpour, Clay-reinforced PVC composites and nanocomposites, Heliyon 10 (7) (2024) e29196 (1-21).
DOI: 10.1016/j.heliyon.2024.e29196
Google Scholar
[16]
G.W. Beall, T.J. Pinnavaia (Eds.), Polymer–Clay Nanocomposites, Wiley, Hoboken, 2001.
Google Scholar
[17]
J. Karger–Kocsis, Zh. Zhang, Structure-property relationships in nanoparticle / semicrystalline thermoplastic composites, in: G.H. Michler, F.J. Balta Calleja (Eds.), Mechanical Properties of Polymers Based on Nanostructure and Morphology, CRC Press, Boca Raton, 2005, Ch. 13, pp.553-602.
DOI: 10.1201/9781420027136
Google Scholar
[18]
F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metall. Mater. Trans. A 39 (2008) 2804-2814.
DOI: 10.1007/s11661-008-9603-5
Google Scholar
[19]
G. Laryea, Polymer–Clay Nanocomposites: Morphology and Physico-Mechanical Properties, Lambert Acad. Publ., London, 2011.
Google Scholar
[20]
K. Jlassi, M.M. Chehimi, S. Thomas, Clay–Polymer Nanocomposites, Elsevier, Amsterdam, 2017.
Google Scholar
[21]
E. Aydınbakar, H. Kurama, The effects of exfoliation on the clay / polymer nanocomposites hydrogel structure, in: Proceedings of the 11th European Metallurgical Conference, 1, GDMB, Salzburg, 2021, 389-406.
Google Scholar
[22]
R.L. Frost, E. Mako, J. Kristof, E. Horvath, J.T. Kloprogge, Mechanochemical treatment of kaolinite, J. Colloid Interface Sci. 239 (2) (2001) 458-466.
DOI: 10.1006/jcis.2001.7591
Google Scholar
[23]
G. Mani, Q. Fan, S.C. Ugbolue, I.M. Eiff, Size reduction of clay particles in nanometer dimensions, Mater. Res. Soc. Symp. Proc. 740 (2003) 113-118.
DOI: 10.1557/proc-740-i3.23
Google Scholar
[24]
Y.-Ch. Lee, Ch.-L. Kuo, Sh.-B. Wen, Ch.-P. Lin, Changes of organo-montmorillonite by ball-milling in water and kerosene, Appl. Clay Sci. 36 (4) (2007) 265-270.
DOI: 10.1016/j.clay.2006.09.013
Google Scholar
[25]
F. Perrin–Sarazin, M. Sepehr, S. Bouaricha, J. Denault, Potential of ball milling to improve clay dispersion in nanocomposites, Polym. Eng. Sci. 49 (2009) 651-665.
DOI: 10.1002/pen.21295
Google Scholar
[26]
R. Zhu, Q. Zhou, J. Zhu, Y. Xi, H. He, Organo-clays as sorbents of hydrophobic organic contaminants: Sorptive characteristics and approaches to enhancing sorption capacity, Clays Clay Min. 63 (3) (2015) 199-221.
DOI: 10.1346/ccmn.2015.0630304
Google Scholar
[27]
Q. Tian, Y. Qi, Sh. Qin, F. Wu, L. Long, G. Xu, X. Yin, Effect of surfactant concentration on thermal and mechanical properties of poly(butylene succinate)/organoclay composites, J. Macromol. Sci. B 56 (7) (2017) 474-492.
DOI: 10.1080/00222348.2017.1327298
Google Scholar
[28]
P.C. Le Baron, Zh. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview, Appl. Clay Sci. 15 (1/2) (1999) 11-29.
Google Scholar
[29]
F. Guo. S. Aryana, Y. Han, Y. Jiao, A review of the synthesis and applications of polymer–nanoclay composites, Appl. Sci. 8 (2018) 1696 (1-29).
Google Scholar
[30]
A.R. Ramadan, A.M.K. Esawi, A.A. Gawad, Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B), Appl. Clay Sci. 47 (3/4) (2010) 196-202.
DOI: 10.1016/j.clay.2009.10.002
Google Scholar
[31]
K. Nagaraju, T.N.V.K.V. Prasad, V. Munaswamy, Y. Reddi Ramu, Nanoclay and its importance, Curr. J. Appl. Sci. Technol. 40 (13) (2021) 71-81.
DOI: 10.9734/cjast/2021/v40i1331395
Google Scholar
[32]
V.V.T. Padil, K.P.A. Kumar, S. Murugesan, R. Torres–Mendieta, S. Waclawek, J.-Y. Cheong, M. Cernik, R.S. Varma, Sustainable and safer nanoclay composites for multifaceted applications, Green Chem. 24 (8) (2022) 3081-3114.
DOI: 10.1039/d1gc03949k
Google Scholar
[33]
H. Kurama, S.B. Sengel, Clay/nanocomposite hydrogels: In review, Physicochem. Probl. Process. 59 (5) (2023)165991 (1-14).
Google Scholar
[34]
F. Guo, S. Aryana, An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery, Fuel 186 (2016) 430-442.
DOI: 10.1016/j.fuel.2016.08.058
Google Scholar
[35]
J. Karger–Kocsis, T. Barany, Single-polymer composites (SPCs): Status and future trends, Compos. Sci. Technol. 92 (2014) 77-94.
DOI: 10.1016/j.compscitech.2013.12.006
Google Scholar
[36]
Sh. Xie, L. Huang, Ch. Su, J. Yan, Zh. Chen, M. Li, M. Du, H. Zhang, Application of clay minerals as adsorbents for removing heavy metals from the environment, Green Smart Mining Eng. 1 (3) (2024) 249-261.
DOI: 10.1016/j.gsme.2024.07.002
Google Scholar
[37]
M.N. Uddin, T. Hossain, N. Mahmud, S. Alam, M. Jobaer, S.I. Mahedi, A. Ali, Research and applications of nanoclays: A review, SPE Polym. 5 (4) (2024) 507-535.
DOI: 10.1002/pls2.10146
Google Scholar
[38]
N. Kumari, Ch. Mohan, Basics of clay minerals and their characteristic properties, in: G.M. Do Nascimento (Ed.), Clay and Clay Minerals, IntechOpen, 2021, DOI 10.5772/intechopen.97672, Ch. 2 (1-29).
DOI: 10.5772/intechopen.97672
Google Scholar
[39]
R. Stephen, S. Varghese, K. Joseph, Z. Oommen, S. Thomas, Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends, J. Membr. Sci. 282 (1/2) (2006) 162-170.
DOI: 10.1016/j.memsci.2006.05.019
Google Scholar
[40]
S.K. Panigrahy, A. Nandha, M. Chaturvedi, P.K. Mishra, Novel nanocomposites with advanced materials and their role in waste water treatment, Next Sustainability 4 (2024) 100042 (1-14).
DOI: 10.1016/j.nxsust.2024.100042
Google Scholar
[41]
N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez–Manchado, Recent advances in clay/polymer nanocomposites, Adv. Mater. 23 (2011) 5229-5236.
DOI: 10.1002/adma.201101948
Google Scholar
[42]
F.N. Muya, C.E. Sunday, P. Baker, E. Iwuoha, Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: A critical review, Water Sci. Technol. 73 (5) (2016) 983-992.
DOI: 10.2166/wst.2015.567
Google Scholar
[43]
N. Pandey, S.K. Shukla, N.B. Singh, Water purification by polymer nanocomposites: An overview, Nanocomposites 3 (2) (2017) 47-66.
DOI: 10.1080/20550324.2017.1329983
Google Scholar
[44]
V.V. Tran, D. Park, Y.-Ch. Lee, Hydrogel applications for adsorption of contaminants in water and wastewater treatment, Environ. Sci. Poll. Res. 25 (2018) 24569-24599.
DOI: 10.1007/s11356-018-2605-y
Google Scholar
[45]
P. Ramiah, L.C. do Toit, Y.E. Choonara, P.P.D. Kondiah, V. Pillay, Hydrogel-based bioinks for 3D bioprinting in tissue regeneration, Front. Mater. 7 (2020) 76 (1-13).
DOI: 10.3389/fmats.2020.00076
Google Scholar
[46]
R.L. Alexa, I. Raluca, D. Savu, M. Temelie, B. Trica, A. Serafim, G.M. Vlasceanu, E. Alexandrescu, S. Preda, H. Iovu, 3D printing of alginate-natural clay hydrogel-based nanocomposites, Gels 7 (2021) 211 (1-22).
DOI: 10.3390/gels7040211
Google Scholar
[47]
M. Xie, J. Su, Sh. Zhou, J. Li, K. Zhang, Application of hydrogels as three-dimensional bioprinting ink for tissue engineering, Gels 9 (2) (2023) 88 (1-20).
DOI: 10.3390/gels9020088
Google Scholar
[48]
Y. Lan, Y. Liu, J. Li, D. Chen, G. He, I.P. Parkin, Natural clay-based materials for energy storage and conversion Applications, Adv. Sci. 8 (11) (2021) 2004036 (1-25).
Google Scholar