Nanoclays and Their Notable Increase in Composite Production, in Review

Article Preview

Abstract:

Nanoclays in 2D layered silicate materials are versatile and dynamic materials with tremendous potential for advanced functional applications. Small particle size, large surface area, and high porosity are the prominent factors that support the use of nanoclays in many different industrial applications. Apart from these well-known features, with their development capabilities such as mechanical strength, thermal and dimension stability, and permeability, nowadays, nanoclays are the most desired material especially in the production of composite materials and products due to their performance-enhancing effects. This paper provides an overview of the latest applications and improvements of polymer/nanoclay composites. Structures, chemical compositions, surface modification methods before use, synthesis techniques of nanoclay composites, and their usage for innovative applications in various fields regarding the latest developments are briefly summarized.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1165)

Pages:

25-39

Citation:

Online since:

November 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Mittal, Polymer layered silicate nanocomposites: A review, Materials 2 (3) (2009) 992-1057.

DOI: 10.3390/ma2030992

Google Scholar

[2] A. Singh, Nanoparticles for environmental clean-up: An overview, Int. J. Appl. Chem. 12 (3) (2016) 175-181.

Google Scholar

[3] J.T. Harris, A.J. McNeil, Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue, J. Polym. Sci. 58 (21) (2020) 3042-3049.

DOI: 10.1002/pol.20200590

Google Scholar

[4] D.B. Tripathy, A. Gupta, Nanocomposites as sustainable smart materials: A review, J. Reinfor. Plastics Compos. https://doi.org/10.1177/07316844241233162 (2024) 1-26.

Google Scholar

[5] N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez–Manchado, Recent advances in clay/polymer nanocomposites, Adv. Mater. 23 (2011) 5229-5236.

DOI: 10.1002/adma.201101948

Google Scholar

[6] J. Sufiyan, A. Uromeihy, M.R. Nikudel, The importance of transition from micro to nano clay size in improving the engineering properties of sandy soils (poorly graded sand), Global J. Earth Sci. Eng. 2 (2) (2015) 41-46.

DOI: 10.15377/2409-5710.2015.02.02.3

Google Scholar

[7] J.L. Suter, D. Groen, P.V. Coveney, Mechanism of exfoliation and prediction of materials properties of clay–polymer nanocomposites from multiscale modeling, Nano Lett. 15 (12) (2015) 8108-8113.

DOI: 10.1021/acs.nanolett.5b03547

Google Scholar

[8] A. Vasudeo Rane, K. Kanny, V.K. Abitha, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites, in: S. Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Eds.), Synthesis of Inorganic Nanomaterials: Advances and Key Technologies, Woodhead Publ., Cambridge, 2018, Ch. 5, pp.121-139.

DOI: 10.1016/b978-0-08-101975-7.00005-1

Google Scholar

[9] Z. Fu, P. Sun, Y. Huang, Y. Li., N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2-30.

Google Scholar

[10] 7 Scintillating Facts about the Earliest Known Use of Nanotechnology – the Lycurgus Cup (17 April 2020): https://interestingengineering.com/7-scintillating-facts-about-the-earliest-known-use-of-nanotechnology-the-lycurgus-cup.

Google Scholar

[11] M. Sen, Nanocomposite materials, in: M. Sen (Ed.), Nanotechnology and the Environment, IntechOpen, 2020, http://dx.doi.org/10.5772/intechopen.93047, Ch. 6 (1-12).

Google Scholar

[12] Polymer Nanocomposites Market Research Report – Global Forecast till 2034: https://www.marketresearchfuture.com/reports?utf8=%E2%9C%93&q=Polymer+Nanocomposites+Market+Research+Report%E2%80%94Global+Forecast+till+2034.

Google Scholar

[13] S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641.

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[14] S.N. Zhumagaliyeva, R.S. Iminovа, G.Z. Kairalapova, Beysebekov М.M., M.K. Beysebekov, Z.A. Abilov, Composite polymer-clay hydrogels based on bentonite clay and acrylates: Synthesis, characterization and swelling capacity, Eurasian Chem.-Technol. J. 19 (2017) 79-288.

DOI: 10.18321/ectj672

Google Scholar

[15] S.B.A. Boraei, B. Bakhshandeh, F. Mohammadzadeh, D.M. Haghigh, Z. Mohammadpour, Clay-reinforced PVC composites and nanocomposites, Heliyon 10 (7) (2024) e29196 (1-21).

DOI: 10.1016/j.heliyon.2024.e29196

Google Scholar

[16] G.W. Beall, T.J. Pinnavaia (Eds.), Polymer–Clay Nanocomposites, Wiley, Hoboken, 2001.

Google Scholar

[17] J. Karger–Kocsis, Zh. Zhang, Structure-property relationships in nanoparticle / semicrystalline thermoplastic composites, in: G.H. Michler, F.J. Balta Calleja (Eds.), Mechanical Properties of Polymers Based on Nanostructure and Morphology, CRC Press, Boca Raton, 2005, Ch. 13, pp.553-602.

DOI: 10.1201/9781420027136

Google Scholar

[18] F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metall. Mater. Trans. A 39 (2008) 2804-2814.

DOI: 10.1007/s11661-008-9603-5

Google Scholar

[19] G. Laryea, Polymer–Clay Nanocomposites: Morphology and Physico-Mechanical Properties, Lambert Acad. Publ., London, 2011.

Google Scholar

[20] K. Jlassi, M.M. Chehimi, S. Thomas, Clay–Polymer Nanocomposites, Elsevier, Amsterdam, 2017.

Google Scholar

[21] E. Aydınbakar, H. Kurama, The effects of exfoliation on the clay / polymer nanocomposites hydrogel structure, in: Proceedings of the 11th European Metallurgical Conference, 1, GDMB, Salzburg, 2021, 389-406.

Google Scholar

[22] R.L. Frost, E. Mako, J. Kristof, E. Horvath, J.T. Kloprogge, Mechanochemical treatment of kaolinite, J. Colloid Interface Sci. 239 (2) (2001) 458-466.

DOI: 10.1006/jcis.2001.7591

Google Scholar

[23] G. Mani, Q. Fan, S.C. Ugbolue, I.M. Eiff, Size reduction of clay particles in nanometer dimensions, Mater. Res. Soc. Symp. Proc. 740 (2003) 113-118.

DOI: 10.1557/proc-740-i3.23

Google Scholar

[24] Y.-Ch. Lee, Ch.-L. Kuo, Sh.-B. Wen, Ch.-P. Lin, Changes of organo-montmorillonite by ball-milling in water and kerosene, Appl. Clay Sci. 36 (4) (2007) 265-270.

DOI: 10.1016/j.clay.2006.09.013

Google Scholar

[25] F. Perrin–Sarazin, M. Sepehr, S. Bouaricha, J. Denault, Potential of ball milling to improve clay dispersion in nanocomposites, Polym. Eng. Sci. 49 (2009) 651-665.

DOI: 10.1002/pen.21295

Google Scholar

[26] R. Zhu, Q. Zhou, J. Zhu, Y. Xi, H. He, Organo-clays as sorbents of hydrophobic organic contaminants: Sorptive characteristics and approaches to enhancing sorption capacity, Clays Clay Min. 63 (3) (2015) 199-221.

DOI: 10.1346/ccmn.2015.0630304

Google Scholar

[27] Q. Tian, Y. Qi, Sh. Qin, F. Wu, L. Long, G. Xu, X. Yin, Effect of surfactant concentration on thermal and mechanical properties of poly(butylene succinate)/organoclay composites, J. Macromol. Sci. B 56 (7) (2017) 474-492.

DOI: 10.1080/00222348.2017.1327298

Google Scholar

[28] P.C. Le Baron, Zh. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview, Appl. Clay Sci. 15 (1/2) (1999) 11-29.

Google Scholar

[29] F. Guo. S. Aryana, Y. Han, Y. Jiao, A review of the synthesis and applications of polymer–nanoclay composites, Appl. Sci. 8 (2018) 1696 (1-29).

Google Scholar

[30] A.R. Ramadan, A.M.K. Esawi, A.A. Gawad, Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B), Appl. Clay Sci. 47 (3/4) (2010) 196-202.

DOI: 10.1016/j.clay.2009.10.002

Google Scholar

[31] K. Nagaraju, T.N.V.K.V. Prasad, V. Munaswamy, Y. Reddi Ramu, Nanoclay and its importance, Curr. J. Appl. Sci. Technol. 40 (13) (2021) 71-81.

DOI: 10.9734/cjast/2021/v40i1331395

Google Scholar

[32] V.V.T. Padil, K.P.A. Kumar, S. Murugesan, R. Torres–Mendieta, S. Waclawek, J.-Y. Cheong, M. Cernik, R.S. Varma, Sustainable and safer nanoclay composites for multifaceted applications, Green Chem. 24 (8) (2022) 3081-3114.

DOI: 10.1039/d1gc03949k

Google Scholar

[33] H. Kurama, S.B. Sengel, Clay/nanocomposite hydrogels: In review, Physicochem. Probl. Process. 59 (5) (2023)165991 (1-14).

Google Scholar

[34] F. Guo, S. Aryana, An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery, Fuel 186 (2016) 430-442.

DOI: 10.1016/j.fuel.2016.08.058

Google Scholar

[35] J. Karger–Kocsis, T. Barany, Single-polymer composites (SPCs): Status and future trends, Compos. Sci. Technol. 92 (2014) 77-94.

DOI: 10.1016/j.compscitech.2013.12.006

Google Scholar

[36] Sh. Xie, L. Huang, Ch. Su, J. Yan, Zh. Chen, M. Li, M. Du, H. Zhang, Application of clay minerals as adsorbents for removing heavy metals from the environment, Green Smart Mining Eng. 1 (3) (2024) 249-261.

DOI: 10.1016/j.gsme.2024.07.002

Google Scholar

[37] M.N. Uddin, T. Hossain, N. Mahmud, S. Alam, M. Jobaer, S.I. Mahedi, A. Ali, Research and applications of nanoclays: A review, SPE Polym. 5 (4) (2024) 507-535.

DOI: 10.1002/pls2.10146

Google Scholar

[38] N. Kumari, Ch. Mohan, Basics of clay minerals and their characteristic properties, in: G.M. Do Nascimento (Ed.), Clay and Clay Minerals, IntechOpen, 2021, DOI 10.5772/intechopen.97672, Ch. 2 (1-29).

DOI: 10.5772/intechopen.97672

Google Scholar

[39] R. Stephen, S. Varghese, K. Joseph, Z. Oommen, S. Thomas, Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends, J. Membr. Sci. 282 (1/2) (2006) 162-170.

DOI: 10.1016/j.memsci.2006.05.019

Google Scholar

[40] S.K. Panigrahy, A. Nandha, M. Chaturvedi, P.K. Mishra, Novel nanocomposites with advanced materials and their role in waste water treatment, Next Sustainability 4 (2024) 100042 (1-14).

DOI: 10.1016/j.nxsust.2024.100042

Google Scholar

[41] N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez–Manchado, Recent advances in clay/polymer nanocomposites, Adv. Mater. 23 (2011) 5229-5236.

DOI: 10.1002/adma.201101948

Google Scholar

[42] F.N. Muya, C.E. Sunday, P. Baker, E. Iwuoha, Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: A critical review, Water Sci. Technol. 73 (5) (2016) 983-992.

DOI: 10.2166/wst.2015.567

Google Scholar

[43] N. Pandey, S.K. Shukla, N.B. Singh, Water purification by polymer nanocomposites: An overview, Nanocomposites 3 (2) (2017) 47-66.

DOI: 10.1080/20550324.2017.1329983

Google Scholar

[44] V.V. Tran, D. Park, Y.-Ch. Lee, Hydrogel applications for adsorption of contaminants in water and wastewater treatment, Environ. Sci. Poll. Res. 25 (2018) 24569-24599.

DOI: 10.1007/s11356-018-2605-y

Google Scholar

[45] P. Ramiah, L.C. do Toit, Y.E. Choonara, P.P.D. Kondiah, V. Pillay, Hydrogel-based bioinks for 3D bioprinting in tissue regeneration, Front. Mater. 7 (2020) 76 (1-13).

DOI: 10.3389/fmats.2020.00076

Google Scholar

[46] R.L. Alexa, I. Raluca, D. Savu, M. Temelie, B. Trica, A. Serafim, G.M. Vlasceanu, E. Alexandrescu, S. Preda, H. Iovu, 3D printing of alginate-natural clay hydrogel-based nanocomposites, Gels 7 (2021) 211 (1-22).

DOI: 10.3390/gels7040211

Google Scholar

[47] M. Xie, J. Su, Sh. Zhou, J. Li, K. Zhang, Application of hydrogels as three-dimensional bioprinting ink for tissue engineering, Gels 9 (2) (2023) 88 (1-20).

DOI: 10.3390/gels9020088

Google Scholar

[48] Y. Lan, Y. Liu, J. Li, D. Chen, G. He, I.P. Parkin, Natural clay-based materials for energy storage and conversion Applications, Adv. Sci. 8 (11) (2021) 2004036 (1-25).

Google Scholar