[1]
J.W. Freeman, H.C. Cross, Notes on Heat-Resistant Materials in Britain from Technical Mission October 13 to November 30, 1950 (Tech. Mem. RM51D23), NACA, Washington, 1951.
Google Scholar
[2]
U.S. Air Force and NASA Joint Conference on Manned Hypervelocity and Reentry Vehicles – Compilation of Papers NASATMX–67563, NASA, Langley Field, 1960.
Google Scholar
[3]
H.A. Jaffe, Development and Testing of Superior Nozzle Materials (Fin. Rep. NASw-67), NASA, Washington, 1961.
Google Scholar
[4]
W.H. Steurer, R.M Crane, L.L. Gilbert, C.A. Hermach, E. Scala, E.J. Zeilberger, R.H. Raring, Thermal Protection Systems: Report on the Aspects of Thermal Protection of Interest to NASA and the Related Materials R&D Requirements, NASA, Washington, 1962.
Google Scholar
[5]
H.L. Schick, Thermodynamics of Certain Refractory Compounds: Thermodynamic Tables, Bibliography, and Property File, Acad. Press, New York, 1966.
Google Scholar
[6]
L.A. McClaine, Thermodynamic and Kinetic Studies for a Refractory Materials Program (Tech. Rep. ASD–TDR–62–204), Air Force Mater. Lab., Wright–Patterson Air Force Base, 1964.
Google Scholar
[7]
W.B. Hillig, Prospects for ultrahigh-temperature ceramic composites, in: R.E. Tressler, G.L. Messing, C.G. Pantano, (Eds.), Tailoring Multiphase and Composite Ceramics, Plenum Press, New York, 1986, pp.697-712.
DOI: 10.1007/978-1-4613-2233-7_55
Google Scholar
[8]
K.M. Vedula, Ultra-High Temperature Ceramic–Ceramic Composites (Fin. Rep. WRDC–TR–89–4089), Air Force Mater. Lab., Wright–Patterson Air Force Base, 1989.
Google Scholar
[9]
G.M. Mehrotra, Chemical Compatibility and Oxidation Resistance of Potential Matrix and Reinforcement Materials in Ceramic Composites for Ultra-High Temperature Applications (Fin. Rep. WRDC–TR–90–4127), Air Force Syst. Command, Wright–Patterson Air Force Base, 1991.
Google Scholar
[10]
E.L. Courtright, H.C. Graham, A.P. Katz, R.J. Kerans, Ultra-High Temperature Assessment Study – Ceramic Matrix Composites (Fin. Rep. WL–TR–91–4061), Wright Lab. Mater. Directorate, Wright–Patterson Air Force Base, 1992.
Google Scholar
[11]
D. Rasky, J. Bull, Ultra-High Temperature Ceramics (Rep. RTOP–232–01–04), NASA, Washington, 1994.
Google Scholar
[12]
G. Zhang, H. Liu, W. Wu, J. Zou, D. Ni, W. Guo, J. Liu, X. Wang, Reactive processes for diboride-based ultra-high temperature ceramics, in: W. Fahrenholtz, E. Wuchina, W. Lee, Y. Zhou (Eds.), Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Hoboken, 2014, pp.33-59.
DOI: 10.1002/9781118700853.ch3
Google Scholar
[13]
T. Prikhna, A. Lokatkina, V. Moshchil, P. Barvitskyi, O. Borimsky, S. Ponomaryov, R. Haber, T. Talako, Investigation of mechanical characteristics of materials based on refractory borides, Technol. Audit Prod. Reserves 6/1 (56) (2020) 40-44.
DOI: 10.15587/2706-5448.2020.220320
Google Scholar
[14]
T.G. Aguirre, C.L. Cramer, E. Cakmak, M.J. Lance, R.A. Lowden, Processing and microstructure of ZrB2–SiC composite prepared by reactive spark plasma sintering, Res. Mater. 11 (2021) 100217 (1-10).
DOI: 10.1016/j.rinma.2021.100217
Google Scholar
[15]
T.O. Prikhna, A.S. Lokatkina, P.P. Barvitskyi, M.V. Karpets, S.S. Ponomaryov, A.A. Bondar, B. Buchner, J. Werner, R. Kluge, V.E. Moshchil, O.I. Borymskyi, L.M. Devin, S.V. Rychev, R. Haber, Z.A. Yasar, B. Matovic, M. Rucki, O.V. Prisyazhna, Structure, mechanical properties, and high-temperature stability of ZrB2- and HfB2-based materials, J. Superhard Mater. 5 (45) (2023) 321-335.
DOI: 10.3103/s1063457623050076
Google Scholar
[16]
W.-W. Wu, G.-J. Zhang, Y.-M. Kan, P.-L. Wang, K. Vanmeensel, J. Vleugels, O. Van der Biest, Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing, Scripta Mater. 57 (2007) 317-320.
DOI: 10.1016/j.scriptamat.2007.04.025
Google Scholar
[17]
L.M. Rueschhoff, C.M. Carney, Z.D. Apostolov, M.K. Cinibulk, Processing of fiber-reinforced ultra-high temperature ceramic composites: A review, Int. J. Ceram. Eng. Sci. 2 (2020) 22-37.
DOI: 10.1002/ces2.10033
Google Scholar
[18]
D. Ni, Y. Cheng, J. Zhang, J.-X. Liu, J. Zou, B. Chen, H. Wu, H. Li, Sh. Dong, J. Han, X. Zhang, Q. Fu, G.-J. Zhang, Advances in ultra-high temperature ceramics, composites, and coatings, J. Adv. Ceram. 11 (1) (2022) 1-56.
DOI: 10.1007/s40145-021-0550-6
Google Scholar
[19]
Z. Mestvirishvili, V. Kvatchadze, I. Bairamashvili, N. Jalabadze, T. Mestvirishvili, Development of the method of production of the ultrafine macrohomogeneous composite powder, Mater. Sci. Technol. 36 (2) (2020) 327-333.
DOI: 10.1080/02670836.2019.1705046
Google Scholar
[20]
E.W. Neuman, M. Thompson, W.G. Fahrenholtz, G.E. Hilmas, Elevated temperature thermal properties of ZrB2–B4C ceramics, J. European Ceram. Soc., 42 (9) (2022) 4024-4029.
DOI: 10.1016/j.jeurceramsoc.2022.03.029
Google Scholar
[21]
G. Bokuchava, E. Sanaia, Z. Mestvirishvili, N. Jalagonia, T. Prikhna, T. Kuchukhidze, N. Darakhvelidze, Production of homogeneous composite press-powders based on ZrB2 and SiC for UHTCs, Nanotechnol. Percep. 19 (3) (2023) 53-66.
Google Scholar
[22]
V.-H. Nguyen, S. Ali Delbari, M. Shahedi Asl, A. Sabahi Namini, M. Ghassemi Kakroudi, Y. Azizian–Kalandaragh, Q.V. Le, M. Mohammadi, M. Shokouhimehr, Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics, Int. J. Ref. Met. Hard Mater. 93 (2020) 105355 (1-10).
DOI: 10.1016/j.ijrmhm.2020.105355
Google Scholar
[23]
E. W. Neuman, G. E. Hilmas, Mechanical Properties of Zirconium-Diboride Based UHTCs. in: W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, Y. Zhou (Eds.), Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Hoboken, 2014, Ch. 8. pp.167-196.
DOI: 10.1002/9781118700853.ch8
Google Scholar
[24]
W.G. Fahrenholtz, G.E. Hilmas, Sh.C. Zhang, S. Zhu, Pressureless sintering of zirconium diboride: Particle size and additive effects, J. American Ceram. Soc. 91 (5) (2008) 1398-1404.
DOI: 10.1111/j.1551-2916.2007.02169.x
Google Scholar
[25]
O.N. Grigoriev, A.V. Stepanenko, V.B. Vinokurov, I.P. Neshpor, T.V Mosina, L. Silvestroni, ZrB2–SiC ceramics: Residual stresses and mechanical properties, J. European Ceram. Soc. 41 (9) (2021) 4720-4727.
DOI: 10.1016/j.jeurceramsoc.2021.02.053
Google Scholar
[26]
M. Lakusta, N.M. Timme, J.L. Watts, W.G. Fahrenholtz, G.E. Hilmas, D.W. Lipke, Pressureless sintering and properties of additively manufactured ZrB2–SiC, J. American Ceram. Soc. 118 (3) (2024) e20250 (1-5).
DOI: 10.1111/jace.20250
Google Scholar
[27]
Z. Mestvirishvili, Sh. Zurabishvili, T. Mestvirishvili, Kh. Bluashvili, A. Sichinava, N. Jalabadze, Effect of thermal treatment on hot-pressed isotopically modified boron carbide 10B4C, Nano Studies 19 (2019) 145-152.
Google Scholar