Production of ZrB2-SiC Based UHTCs with Addition of Boron Carbide and Graphene

Article Preview

Abstract:

The work aimed to obtain zirconium diboride ZrB2 and silicon carbide SiC based ultra-high temperature ceramics, which have improved properties due to the unique morphology of starting ultrafine homogeneous composite powders. Such properties make it possible to use the product as thermal protection materials of hypersonic aircraft. The novelty of the research is the use of methods that lead to relevant selection of sintering additives/dopants and obtaining a fine microstructure, as well as the combined effect of these factors. Boron carbide B4C, graphite powder, carbon black, and graphene structures are used as sintering additives. ZrB2 nano powders with different stoichiometry and graphene nanostructural inclusions are produced and then their nanopowder ceramic composites with SiC are made by vacuum hot-pressing method at 1700–1750°C. The following key properties of powders and ceramics were determined: morphology, elemental and phase compositions, particle size distribution, relative density, hardness, and flexural strength and modulus.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1165)

Pages:

51-62

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Freeman, H.C. Cross, Notes on Heat-Resistant Materials in Britain from Technical Mission October 13 to November 30, 1950 (Tech. Mem. RM51D23), NACA, Washington, 1951.

Google Scholar

[2] U.S. Air Force and NASA Joint Conference on Manned Hypervelocity and Reentry Vehicles – Compilation of Papers NASATMX–67563, NASA, Langley Field, 1960.

Google Scholar

[3] H.A. Jaffe, Development and Testing of Superior Nozzle Materials (Fin. Rep. NASw-67), NASA, Washington, 1961.

Google Scholar

[4] W.H. Steurer, R.M Crane, L.L. Gilbert, C.A. Hermach, E. Scala, E.J. Zeilberger, R.H. Raring, Thermal Protection Systems: Report on the Aspects of Thermal Protection of Interest to NASA and the Related Materials R&D Requirements, NASA, Washington, 1962.

Google Scholar

[5] H.L. Schick, Thermodynamics of Certain Refractory Compounds: Thermodynamic Tables, Bibliography, and Property File, Acad. Press, New York, 1966.

Google Scholar

[6] L.A. McClaine, Thermodynamic and Kinetic Studies for a Refractory Materials Program (Tech. Rep. ASD–TDR–62–204), Air Force Mater. Lab., Wright–Patterson Air Force Base, 1964.

Google Scholar

[7] W.B. Hillig, Prospects for ultrahigh-temperature ceramic composites, in: R.E. Tressler, G.L. Messing, C.G. Pantano, (Eds.), Tailoring Multiphase and Composite Ceramics, Plenum Press, New York, 1986, pp.697-712.

DOI: 10.1007/978-1-4613-2233-7_55

Google Scholar

[8] K.M. Vedula, Ultra-High Temperature Ceramic–Ceramic Composites (Fin. Rep. WRDC–TR–89–4089), Air Force Mater. Lab., Wright–Patterson Air Force Base, 1989.

Google Scholar

[9] G.M. Mehrotra, Chemical Compatibility and Oxidation Resistance of Potential Matrix and Reinforcement Materials in Ceramic Composites for Ultra-High Temperature Applications (Fin. Rep. WRDC–TR–90–4127), Air Force Syst. Command, Wright–Patterson Air Force Base, 1991.

Google Scholar

[10] E.L. Courtright, H.C. Graham, A.P. Katz, R.J. Kerans, Ultra-High Temperature Assessment Study – Ceramic Matrix Composites (Fin. Rep. WL–TR–91–4061), Wright Lab. Mater. Directorate, Wright–Patterson Air Force Base, 1992.

Google Scholar

[11] D. Rasky, J. Bull, Ultra-High Temperature Ceramics (Rep. RTOP–232–01–04), NASA, Washington, 1994.

Google Scholar

[12] G. Zhang, H. Liu, W. Wu, J. Zou, D. Ni, W. Guo, J. Liu, X. Wang, Reactive processes for diboride-based ultra-high temperature ceramics, in: W. Fahrenholtz, E. Wuchina, W. Lee, Y. Zhou (Eds.), Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Hoboken, 2014, pp.33-59.

DOI: 10.1002/9781118700853.ch3

Google Scholar

[13] T. Prikhna, A. Lokatkina, V. Moshchil, P. Barvitskyi, O. Borimsky, S. Ponomaryov, R. Haber, T. Talako, Investigation of mechanical characteristics of materials based on refractory borides, Technol. Audit Prod. Reserves 6/1 (56) (2020) 40-44.

DOI: 10.15587/2706-5448.2020.220320

Google Scholar

[14] T.G. Aguirre, C.L. Cramer, E. Cakmak, M.J. Lance, R.A. Lowden, Processing and microstructure of ZrB2–SiC composite prepared by reactive spark plasma sintering, Res. Mater. 11 (2021) 100217 (1-10).

DOI: 10.1016/j.rinma.2021.100217

Google Scholar

[15] T.O. Prikhna, A.S. Lokatkina, P.P. Barvitskyi, M.V. Karpets, S.S. Ponomaryov, A.A. Bondar, B. Buchner, J. Werner, R. Kluge, V.E. Moshchil, O.I. Borymskyi, L.M. Devin, S.V. Rychev, R. Haber, Z.A. Yasar, B. Matovic, M. Rucki, O.V. Prisyazhna, Structure, mechanical properties, and high-temperature stability of ZrB2- and HfB2-based materials, J. Superhard Mater. 5 (45) (2023) 321-335.

DOI: 10.3103/s1063457623050076

Google Scholar

[16] W.-W. Wu, G.-J. Zhang, Y.-M. Kan, P.-L. Wang, K. Vanmeensel, J. Vleugels, O. Van der Biest, Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing, Scripta Mater. 57 (2007) 317-320.

DOI: 10.1016/j.scriptamat.2007.04.025

Google Scholar

[17] L.M. Rueschhoff, C.M. Carney, Z.D. Apostolov, M.K. Cinibulk, Processing of fiber-reinforced ultra-high temperature ceramic composites: A review, Int. J. Ceram. Eng. Sci. 2 (2020) 22-37.

DOI: 10.1002/ces2.10033

Google Scholar

[18] D. Ni, Y. Cheng, J. Zhang, J.-X. Liu, J. Zou, B. Chen, H. Wu, H. Li, Sh. Dong, J. Han, X. Zhang, Q. Fu, G.-J. Zhang, Advances in ultra-high temperature ceramics, composites, and coatings, J. Adv. Ceram. 11 (1) (2022) 1-56.

DOI: 10.1007/s40145-021-0550-6

Google Scholar

[19] Z. Mestvirishvili, V. Kvatchadze, I. Bairamashvili, N. Jalabadze, T. Mestvirishvili, Development of the method of production of the ultrafine macrohomogeneous composite powder, Mater. Sci. Technol. 36 (2) (2020) 327-333.

DOI: 10.1080/02670836.2019.1705046

Google Scholar

[20] E.W. Neuman, M. Thompson, W.G. Fahrenholtz, G.E. Hilmas, Elevated temperature thermal properties of ZrB2–B4C ceramics, J. European Ceram. Soc., 42 (9) (2022) 4024-4029.

DOI: 10.1016/j.jeurceramsoc.2022.03.029

Google Scholar

[21] G. Bokuchava, E. Sanaia, Z. Mestvirishvili, N. Jalagonia, T. Prikhna, T. Kuchukhidze, N. Darakhvelidze, Production of homogeneous composite press-powders based on ZrB2 and SiC for UHTCs, Nanotechnol. Percep. 19 (3) (2023) 53-66.

Google Scholar

[22] V.-H. Nguyen, S. Ali Delbari, M. Shahedi Asl, A. Sabahi Namini, M. Ghassemi Kakroudi, Y. Azizian–Kalandaragh, Q.V. Le, M. Mohammadi, M. Shokouhimehr, Role of hot-pressing temperature on densification and microstructure of ZrB2–SiC ultrahigh temperature ceramics, Int. J. Ref. Met. Hard Mater. 93 (2020) 105355 (1-10).

DOI: 10.1016/j.ijrmhm.2020.105355

Google Scholar

[23] E. W. Neuman, G. E. Hilmas, Mechanical Properties of Zirconium-Diboride Based UHTCs. in: W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, Y. Zhou (Eds.), Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Hoboken, 2014, Ch. 8. pp.167-196.

DOI: 10.1002/9781118700853.ch8

Google Scholar

[24] W.G. Fahrenholtz, G.E. Hilmas, Sh.C. Zhang, S. Zhu, Pressureless sintering of zirconium diboride: Particle size and additive effects, J. American Ceram. Soc. 91 (5) (2008) 1398-1404.

DOI: 10.1111/j.1551-2916.2007.02169.x

Google Scholar

[25] O.N. Grigoriev, A.V. Stepanenko, V.B. Vinokurov, I.P. Neshpor, T.V Mosina, L. Silvestroni, ZrB2–SiC ceramics: Residual stresses and mechanical properties, J. European Ceram. Soc. 41 (9) (2021) 4720-4727.

DOI: 10.1016/j.jeurceramsoc.2021.02.053

Google Scholar

[26] M. Lakusta, N.M. Timme, J.L. Watts, W.G. Fahrenholtz, G.E. Hilmas, D.W. Lipke, Pressureless sintering and properties of additively manufactured ZrB2–SiC, J. American Ceram. Soc. 118 (3) (2024) e20250 (1-5).

DOI: 10.1111/jace.20250

Google Scholar

[27] Z. Mestvirishvili, Sh. Zurabishvili, T. Mestvirishvili, Kh. Bluashvili, A. Sichinava, N. Jalabadze, Effect of thermal treatment on hot-pressed isotopically modified boron carbide 10B4C, Nano Studies 19 (2019) 145-152.

Google Scholar