[1]
D. Ouyang, H. Yan, J. Song, C. Yang, T. Jiang, C. Liu, Combustion characteristics and fire hazard of polystyrene exterior wall thermal insulation materials, Journal of Applied Polymer Science, 140(8) (2022) e53503.
DOI: 10.1002/app.53503
Google Scholar
[2]
A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods, Materials Science Forum 1068 (2022) 231–238.
DOI: 10.4028/p-18k386
Google Scholar
[3]
M.L. Marques, E. Cairrao, Occurrence and health effects of hexabromocyclododecane: An updated review, Toxics, 11(5) (2023) 409.
DOI: 10.3390/toxics11050409
Google Scholar
[4]
J. Feiteiro, M. Mariana, E. Cairrao, Health toxicity effects of brominated flame retardants: From environmental to human exposure, Environmental Pollution, 285 (2021) 117475.
DOI: 10.1016/j.envpol.2021.117475
Google Scholar
[5]
J. Deng, W. Liu, L. Gao, T. Jia, Y. He, T. Mao, J. Hussain, A review of distribution and profiles of HBCD in different environmental media of China, Molecules, 29(1) (2023) 36.
DOI: 10.3390/molecules29010036
Google Scholar
[6]
A.D. Zhukov, P.M. Zhuk, I.V. Stepina, Assessment of the environmental impact on the life cycle of polystyrene thermal insulation materials, Journal of Physics Conference Series, 2388(1) (2022) 012101.
DOI: 10.1088/1742-6596/2388/1/012101
Google Scholar
[7]
Loboichenko, V., Strelec, V. (2018). The natural waters and aqueous solutions express-identification as element of determination of possible emergency situation. Water and Energy International, 61/9, 43–50.
Google Scholar
[8]
EPA 2014, 6 2014. United States Environmental Protection Agency: Flame Retardant Alternatives for Hexabromocyclododecane (HBCD) e Final Report, 06/2014. Available online: https://www.epa.gov/sites/production/files/2014-06/documents/hbcd_report.pdf.
Google Scholar
[9]
C. Koch, B. Sures, Degradation of brominated polymeric flame retardants and effects of generated decomposition products, Chemosphere, 227 (2019) 329–333.
DOI: 10.1016/j.chemosphere.2019.04.052
Google Scholar
[10]
C. Koch, B. Sures, Ecotoxicological characterization of possible degradation products of the polymeric flame retardant "Polymeric FR" using algae and Daphnia OECD tests, Science of the Total Environment, 56 (2019) 101–107.
DOI: 10.1016/j.scitotenv.2018.11.207
Google Scholar
[11]
Chernukha, A., Teslenko, A., Kovaliov, P., Bezuglov, O. (2020). Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 MSF, 70–75.
DOI: 10.4028/www.scientific.net/msf.1006.70
Google Scholar
[12]
S. Hamdani-Devarennes, R.E. Hage, L. Dumazert, R. Sonnier, L. Ferry, J. Lopez-Cuesta, C. Bert, Water-based flame retardant coating using nano-boehmite for expanded polystyrene (EPS) foam, Progress in Organic Coatings, 99 (2016) 32–46.
DOI: 10.1016/j.porgcoat.2016.04.036
Google Scholar
[13]
Y. Liu, Y. Gao, Q. Wang, W. Lin, The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review, Dalton Transactions, 47(42) (2019) 14827–14840.
DOI: 10.1039/c8dt02949k
Google Scholar
[14]
M.J. Mochane, S.I. Magagula, J.S. Sefadi, E.R. Sadiku, T.C. Mokhena, Morphology, thermal stability, and flammability properties of Polymer-Layered Double Hydroxide (LDH) nanocomposites: a review, Crystals, 10(7) (2020) 612.
DOI: 10.3390/cryst10070612
Google Scholar
[15]
Q. Guo, Preparation and sound insulation Performance of polystyrene building flame retardant and thermal insulation building materials, International Journal of Analytical Chemistry, (2022) 1–6.
DOI: 10.1155/2022/6444367
Google Scholar
[16]
J. Liu, Y. Guo, H. Chang, H. Li, A. Xu, B. Pan, Interaction between magnesium hydroxide and microencapsulated red phosphorus in flame‐retarded high‐impact polystyrene composite, Fire and Materials, 42(8) (2018) 958–966.
DOI: 10.1002/fam.2650
Google Scholar
[17]
J. Liu, Y. Zhang, Y. Guo, C. Lu, B. Pan, S. Peng, J. Ma, Q. Niu, Effect of carbon black on the thermal degradation and flammability properties of flame‐retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite, Polymer Composites, 39(3) (2016) 770–782.
DOI: 10.1002/pc.23998
Google Scholar
[18]
N.F. Attia, Sustainable and efficient flame retardant materials for achieving high fire safety for polystyrene composites, Journal of Thermal Analysis and Calorimetry, 47 (2022) 5733–5742.
DOI: 10.1007/s10973-021-10948-3
Google Scholar
[19]
V. Pasternak, L. Samchuk, N. Huliieva, I. Andrushchak, A. Ruban, Investigation of the properties of powder materials using computer modeling, Materials Science Forum 1038 (2021) 33–39.
DOI: 10.4028/www.scientific.net/msf.1038.33
Google Scholar
[20]
C. Bao, L. Song, C.A. Wilkie, B. Yuan, Y. Guo, Y. Hu, X. Gong, Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene, Journal of Materials Chemistry, 22(32) (2012) 16399.
DOI: 10.1039/c2jm32500d
Google Scholar
[21]
A. Hofmann, S. Kaudelka, S. Hauswaldt, Fire safety of FAÇADES with polystyrene foam insulation, Fire and Materials, 42(5) (2018) 466–474.
DOI: 10.1002/fam.2662
Google Scholar
[22]
L. Xu, X.D. Cheng, C.C. Liu, Y.N. Hou, H. Yang, Experimental study on fire characteristics of building external thermal insulation composite systems based on polystyrene foam, Advanced Materials Research, 893 (2014) 221–227.
DOI: 10.4028/www.scientific.net/amr.893.221
Google Scholar
[23]
S. Varnagiris, S. Tuckute, M. Lelis, D. Milcius, D. SiO2 films as heat resistant layers for protection of expandable polystyrene foam from flame torch–induced heat, Journal of Thermoplastic Composite Materials, 31(5) (2017) 657–667.
DOI: 10.1177/0892705717718238
Google Scholar
[24]
Skorodumova, O., Sharshanov, A., Chebotaryova, O., Kurepin, V., Sotiriadis, K. Fire-Resistant Coatings, Obtained by Layer-by-Layer Assembly, in the System of Silicic Acid Gel – Diammonium Hydrogen Phosphate – Urea, Key Engineering Materials 2023 954 157–165.
DOI: 10.4028/p-s5rvla
Google Scholar
[25]
N. Lysak, O. Skorodumova, A. Chernukha, Development of a fire-proof coating containing silica for polystyrene, Problems of Emergency Situations, 2(38) (2023) 156–157.
DOI: 10.52363/2524-0226-2023-38-10
Google Scholar
[26]
Skorodumova, O., Tarakhno, O., Babayev, A., Chernukha, A., Shvydka, S. Study of Phosphorus-Containing Silica Coatings Based on Liquid Glass for Fire Protection of Textile Materials, Key Engineering Materials (2023) 954 167–175.
DOI: 10.4028/p-hgyq9v
Google Scholar
[27]
M. Zielecka, A. Rabajczyk, Ł. Pastuszka, L. Jurecki, Flame resistant Silicone-Containing coating materials, Coatings, 10(5) (2020) 479.
DOI: 10.3390/coatings10050479
Google Scholar
[28]
K. Wang, W. Huang, Q. Tian, C. Tu, C. Yang, W. Yan, Multiple synergistic effects of silicon-containing flame retardants and DOPO derivative enhance the flame retardancy of epoxy resin, Polymer-Plastics Technology and Materials, 63(10) (2024) 1294-1305.
DOI: 10.1080/25740881.2024.2328617
Google Scholar
[29]
N. Lysak, O. Skorodumova, A. Chernukha, V. Kurepin, Effect of H3PO4 and Phenol Additives on Gel Formarion in Silica Fire-Retardant Coatings for Building Materials, Defect and Diffusion Forum, 437 (2024) 103–113.
DOI: 10.4028/p-uvjat0
Google Scholar
[30]
Lysak, N., Skorodumova, O., Chernukha, A., Kochubei, V., Sotiriadis, K. Study of Gelation Processes in Flame Retardant Compositions of the SiO2 Sol System–A Phosphate-Containing Additive, Defect and Diffusion Forum (2025) 438 101–110.
DOI: 10.4028/p-i2syir
Google Scholar
[31]
O.Skorodumova, O.Tarakhno, O.Chebotaryova, Y.Hapon, F.M. Emen, Formation of fire retardant properties in elastic silica coatings for textile materials, Materials Science Forum, 1006 (2020) 25-31.
DOI: 10.4028/www.scientific.net/msf.1006.25
Google Scholar
[32]
Skorodumova, O., Tarakhno, O., Chebotaryova, O. Improving the Fire-Retardant Properties of Cotton-Containing Textile Materials through the Use of Organo-Inorganic SiO2 Sols, Key Engineering Materials (2022) 927 63–68.
DOI: 10.4028/p-jbv49r
Google Scholar