[1]
Y. Hapon, D. Tregubov, О. Tarakhno, V. Deineka, Technology оf Safe Galvanochemical Process оf Strong Platings Forming Using Ternary Alloy, Materials Science Forum, 1006 (2020) 233–238.
DOI: 10.4028/www.scientific.net/msf.1006.233
Google Scholar
[2]
A. Sincheskul, H.Pancheva, V. Loboichenko, S. Avina, O. Khrystych, A. Pilipenko, Design of the modified oxide-nickel electrode with improved electrical characteristics. Eastern-European Journal of Enterprise Technologies, 5/6(89) (2017) 23–28.
DOI: 10.15587/1729-4061.2017.112264
Google Scholar
[3]
L. Lisitsyna, I. Tupitsyna, L. Trefilova, Spectral and kinetic characteristics of the luminescence center in LiF-WO3 and ZnWO4 crystals, IOP Conference Series: Materials Science and Engineering, 81/1 (2015). 012024.
DOI: 10.1088/1757-899x/81/1/012024
Google Scholar
[4]
V. Balaram, M. Santosh, M. Satyanarayanan, N. Srinivas, H. Gupta, Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geoscience Frontiers. 15 (2024) 101868.
DOI: 10.1016/j.gsf.2024.101868
Google Scholar
[5]
M. Hannan, A. Al-Shetwi, R. Begum, P. Ker, S. Rahman, M. Mansor, M. Mia, K. Muttaqi, Z. Dong, Impact assessment of battery energy storage systems towards achieving sustainable development goals, Journal of Energy Storage, 42 (2021) 103040
DOI: 10.1016/j.est.2021.103040
Google Scholar
[6]
N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18/5 (2015) 252–264.
DOI: 10.1016/j.mattod.2014.10.040
Google Scholar
[7]
Yu. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Zh. Deng, J. Xiao, Lithium and lithium ion batteries for applications in microelectronic devices: A review, Journal of Power Sources, 286 (2015) 330–345.
DOI: 10.1016/j.jpowsour.2015.03.164
Google Scholar
[8]
Ch. Henriksen, J. K. Mathiesen, D. B. Ravnsb, Improving capacity and rate capability of Li-ion cathode materials through ball milling and carbon coating - Best practice for research purposes, Solid State Ionics, 344 (2020) 115152.
DOI: 10.1016/j.ssi.2019.115152
Google Scholar
[9]
X. Ren, Y Zhang.,M. Engelhard., Q. Li, J. Zhang, W. Xu, Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF and Cyclic Carbonate Additives, ACS Energy Letters,.3/1 (2017) 14–19.
DOI: 10.1021/acsenergylett.7b00982
Google Scholar
[10]
D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova, Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure, Solid State Phenomena, 334 (2022) 124–130.
DOI: 10.4028/p-3751s3
Google Scholar
[11]
I. Glassman, R. Yetter, Combustion, London, Elsevier, 2014.
Google Scholar
[12]
D. Tregubov, I. Dadashov, V. Nuianzin, O. Khrystych, N. Minska, Relationship Between Properties of Floating Systems and Flammable Liquids in the Stopping Their Burning Technology, Key Engineering Materials,.954 (2023) 145–155.
DOI: 10.4028/p-krzrd9
Google Scholar
[13]
Zh. Yu, H. Wang, X. Kong, W. Huang, Yu. Tsao, D. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Yu. Zheng, Ch. Amanchukwu, S. Hung, Y. Ma, E. Lomeli, J. Qin, Y. Cui, Zh. Bao, Molecular design for electrolyte solvents enabling energydense and long-cycling lithium metal batteries, Nature Energy, 5 (2020) 1–8.
DOI: 10.1038/s41560-020-0634-5
Google Scholar
[14]
Ch. Fu, V. Venturi, J. Kim, Z. Ahmad, A. Ells, V. Viswanathan, B. Helms, Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries, Nature Materials, 19(7) (2020) 758–766.
DOI: 10.1038/s41563-020-0655-2
Google Scholar
[15]
O. Willstrand, M. Pushp, H. Ingason, D. Brandell, Uncertainties in the use of oxygen consumption calorimetry for heat release measurements in lithium-ion battery fires, Fire Safety Journal, 143 (2024) 104078.
DOI: 10.1016/j.firesaf.2023.104078
Google Scholar
[16]
D. Tregubov, M. Chyrkina-Kharlamovа, Y. Hapon, Y. Zmaha, Peroxide Conditions Modeling for the Combustion Occurrence, Defect and Diffusion Forum, 438 (2025) 111–121.
DOI: 10.4028/p-9pcdbi
Google Scholar
[17]
A. Barowy, The Science of Fire and Explosion Hazards from Lithium-Ion Batteries. Evanston, USA: Fire Safety Research Institute, 2023.
Google Scholar
[18]
D. Tregubov, D. Miroshnichenko, M. Ulanovskij, Thermomechanochemical evaluation of quality of coke, Koks i Khimiya, 11 (2004) 14–19.
Google Scholar
[19]
IEC 62133-2:2017+A1:2021. Specifies requirements and tests for the safe operation of portable sealed secondary lithium cells and batteries containing non-acid electrolyte, under intended use and reasonabl. International standard. 2021.
DOI: 10.3403/30294649
Google Scholar
[20]
B. Pospelov, E. Rybka, V. Togobytska, R. Meleshchenko, Y. Danchenko, T. Butenko, I. Volkov, O. Gafurov, V. Yevsieiev, Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10(100) (2019).22–29.
DOI: 10.15587/1729-4061.2019.176579
Google Scholar
[21]
V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, A. Rud, K. Karpets, Y. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations, Eastern-European Journal of Enterprise Technologies, 6(10) (2020) 14–22.
DOI: 10.15587/1729-4061.2020.218714
Google Scholar
[22]
B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, S. Gornostal, Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials, Eastern-European Journal of Enterprise Technologies, 5/10 (2018) 25–30.
DOI: 10.15587/1729-4061.2018.142995
Google Scholar
[23]
B. Pospelov, E. Rybka, R. Meleshchenko, S. Gornostal, S. Shcherbak, Results of experimental research into correlations between hazardous factors of ignition of materials in premises, Eastern-European Journal of Enterprise Technologies, 6/10(90) (2017) 50–56.
DOI: 10.15587/1729-4061.2017.117789
Google Scholar
[24]
D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finelydispersed water, Eastern-European Journal of Enterprise Technologies, 2/10(92) (2018) 38–43.
DOI: 10.15587/1729-4061.2018.127865
Google Scholar
[25]
D. Tregubov, О. Kireev, K. Kуazimov, L. Trefilova, S. Vavreniuk. А. Fire extinguishing development directions for liquids based on the foam glass primary layer, Problems of Emergency Situations, 2/40 2024) 165-184.
DOI: 10.52363/2524-0226-2024-40-13
Google Scholar
[26]
R. Pietukhov, A. Kireev, D. Tregubov, S. Hovalenkov, Experimental Study of the Insulating Properties of a Lightweight Material Based on Fast-Hardening Highly Resistant Foams in Relation to Vapors of Toxic Organic Fluids, Materials Science Forum, 1038 (2021) 374–382.
DOI: 10.4028/www.scientific.net/msf.1038.374
Google Scholar
[27]
A. Chernukha, A. Teslenko, P. Kovaliov, O. Bezuglov, Mathematical modeling of fire-proof efficiency of coatings based on silicate composition, Materials Science Forum, 1006 (2020) 70–75.
DOI: 10.4028/www.scientific.net/msf.1006.70
Google Scholar
[28]
V. Loboichenko, N. Leonova, V. Strelets, A. Morozov, R. Shevchenko, P. Kovalov, R. Ponomarenko, Т. Kovalova, Comparative analysis of the influence of various dry powder fire extinguishing compositions on the aquatic environment, Water and Energy International, 62/7 (2019) 63–68.
DOI: 10.36478/jeasci.2019.5925.5941
Google Scholar