Effect of Wire Electrical Discharge Machining on Hole Expansion Ratio of 1 GPa Low Carbon Low Alloyed Steel

Article Preview

Abstract:

The stretch flangeability of ferritic steel grade with tensile strength ≥1 GPa in hole expansion tests can be significantly improved by using the wire electrical discharge machining (W-EDM) process for hole-making instead of conventional punching tools. This improvement is attributed to the notably enhanced cut edge quality of the machined holes. In this study, the average hole expansion ratio (HER) of a novel 0.1C-0.3V-0.25Mo-0.08Ti-0.08Nb steel increased from 24% to 91% when W-EDM was used in hole preparation. A comparison between the fractured surfaces of punched and W-EDM-machined holes after HER testing revealed different failure mechanisms in the steel sheet. At the onset of cracking, fractures in the W-EDM specimens exhibited ductile behavior, whereas quasi-cleavage fracture was observed in the punched specimens. Based on texture measurements and metallographic investigations, it was concluded that reducing the intensity of the adverse shear texture component {112}<111> near the steel sheet surface and eliminating microstructural constituent variations improved the stretch flangeability of the Ti-Mo-V-Nb steel in both hole-making processes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1174)

Pages:

15-19

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhao, Z. Jiang, Thermomechanical processing of advanced high strength steels. Prog. Mater. Sci. 94 (2018) 174–242.

Google Scholar

[2] X. Chen, H. Jiang, Z. Cui, C. Lian, C. Lu, Hole expansion characteristics of ultra high strength steels, Procedia Eng. 81 (2014) 718–723.

DOI: 10.1016/j.proeng.2014.10.066

Google Scholar

[3] P. Plosila, V. Kesti, J. Hannula, J. Kömi, A. Kaijalainen, A comparison between tensile and hole expansion properties in 800 MPa tensile strength grade hot-rolled steels, Mater. Today Commun. 40 (2024) 109521.

DOI: 10.1016/j.mtcomm.2024.109521

Google Scholar

[4] K-F. Zhu, W-J. Wang, B. Zhang, X-J.Sun, C-F. Yang, Effect of Nb addition on hole expansion ratio and its precipitation behavior in Ti-microalloyed hot-rolled high-strength steel, J. Iron Steel Res. Int. (2025).

DOI: 10.1007/s42243-024-01380-6

Google Scholar

[5] M. Madrid, C. J. Van Tyne, S. Sriram, E. J. Pavlina, J. Hu, K. D. Clarke, Hole expansion ratio in intercritically annealed QP 980/1180 steel grades as a function of testing condition, IOP Conf. Ser.: Mater. Sci. Eng. 418 (2018) 012083.

DOI: 10.1088/1757-899x/418/1/012083

Google Scholar

[6] A. N. Moura, J. L. Ferreira, J. B. R. Martins, M. V. Souza, N. A. Castro, M. T. D'Azeredo Orlando, Microstructure, crystallographic texture, and stretch-flangeability of hot-rolled multiphase steel, Steel Res. Int., 91 (2020) 1900591.

DOI: 10.1002/srin.201900591

Google Scholar

[7] E. Hutten, S. Liang, E. Bellhouse, S. Sarkar, Y. Lu, B. Langelier, H. S. Zurob, Mechanical properties and precipitation behavior of high strength hot-rolled ferritic steel containing Nb and V, J. Mater. Res. Technol. 14 (2021) 2061–2070.

DOI: 10.1016/j.jmrt.2021.07.107

Google Scholar

[8] Y. Wu, J. Uusitalo, A. J. DeArdo, Investigation of the critical factors controlling sheared edge stretching of ultra-high strength dual-phase steels, Mater. Sci. Eng. A, 828 (2021) 142070.

DOI: 10.1016/j.msea.2021.142070

Google Scholar

[9] M. Chinara, S.K. Paul, S. Chatterjee, S. Mukherjee, Effect of central hole edge preparation, coefficient of friction and spring-back on hole expansion ratio of automotive steels, J. Alloy Metall. Sys. 4 (2023) 100046.

DOI: 10.1016/j.jalmes.2023.100046

Google Scholar

[10] Y. Chang, J. Zhang, S. Han, X. Li, Shuzhou Yu, Influence of cutting process on the flanging formability of the cut edge for DP980 steel, Metals 12 (2023) 948.

DOI: 10.3390/met13050948

Google Scholar

[11] O. Nousiainen, J. Hannula, S. Saukko, A. Kaijalainen, J. Kömi, Comparison of novel 1 GPa low-carbon, low-alloyed steel produced with simulated and laboratory-scale thermomechanical controlled processes, Steel Res. Int. 96 (2025) 2400481.

DOI: 10.1002/srin.202400481

Google Scholar

[12] International standard ISO 16630:2017 Metallic materials - Sheet and strip - Hole expanding test.

Google Scholar

[13] K. Mori, Y. Abe, Y. Kidoma, P. Kadarno, Slight clearance punching of ultra-high strength steel sheets using punch having small round edge, Int. J. Mach. Tools Manuf. 65 (2013) 41–46.

DOI: 10.1016/j.ijmachtools.2012.09.005

Google Scholar

[14] P. Larour, J. Hinterdorfer, L. Wagner, J. Freudenthaler, A. Grünsteidl, M. Kerschbaum, IOP Conf. Ser.: Mater. Sci. Eng. 1238 (2022) 012041.

DOI: 10.1088/1757-899x/1238/1/012041

Google Scholar

[15] Z. Li, L. Liu, Q. Xue, C. Wu, F. Lu, Z. Zhao, Study on microstructure characteristics and hole expansion mechanism of Ti–Nb–V microalloyed 900 MPa hot-rolled ferrite-bainite high hole expansion steel, J. Mater. Res. Technol. 33 (2024) 7469–7481.

DOI: 10.1016/j.jmrt.2024.11.056

Google Scholar

[16] A. Kaijalainen, P. Suikkanen, L.P. Karjalainen, J.J Jones, Effect of austenite pancaking on the microstructure, texture, and bendability of an ultrahigh-strength strip steel, Metall. Mater. Trans. A 45A (2014) 1273–1283.

DOI: 10.1007/s11661-013-2062-7

Google Scholar

[17] A. Mandal, A. Karmakar, D. Chakrabarti, C. Davis, Effect of alloying and coiling temperature on the microstructure and bending performance of ultra-high-strength strip steel, Metall. Mater. Trans. A 49A (2018) 6359–6374.

DOI: 10.1007/s11661-018-4946-z

Google Scholar