[1]
M. Soleimani, A. Kalhor, and H. Mirzadeh, 'Transformation-induced plasticity (TRIP) in advanced steels: A review', Mater. Sci. Eng. A, vol. 795, p.140023, Sep. 2020.
DOI: 10.1016/j.msea.2020.140023
Google Scholar
[2]
Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, 'Novel ultra-high straining process for bulk materials development of the accumulativer roll bonding (ARB) process', p.5, 1998.
DOI: 10.1016/s1359-6454(98)00365-6
Google Scholar
[3]
M. Seleznev, J. Mantel, M. Schmidtchen, U. Prahl, H. Biermann, and A. Weidner, 'Steel–Steel Laminates Manufactured via Accumulative Roll Bonding', Steel Res. Int., vol. 96, no. 5, 2025.
DOI: 10.1002/srin.202400472
Google Scholar
[4]
M. Schmidtchen, Mehrskalige Modellierung des Walzplattierens und Walzens von Werkstoffverbunden. in Freiberger Forschungshefte / B, no. 372. Institut für Metallformung, TU Bergakademie Freiberg, 2017.
Google Scholar
[5]
Th. von Kármán, 'Beitrag zur Theorie des Walzvorganges', Z. Für Angwandte Math. Mech., vol. 5, no. 2, p.139–141, 1925.
DOI: 10.1002/zamm.19250050213
Google Scholar
[6]
M. Weiner, M. Schmidtchen, and U. Prahl, 'Extension of the Freiberg layer model by means of elastic-plastic material behavior', Steel Res. Int., 2021.
DOI: 10.1002/srin.202100373
Google Scholar
[7]
J. H. Hitchcock and W. Trinks, 'Roll neck bearings', ASME, New York, Report of Special Research Committee on Roll Neck Bearings, 1935.
DOI: 10.1115/1.4057641
Google Scholar
[8]
A. Hensel and T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1978.
Google Scholar
[9]
N. A. Fleck and K. L. Johnson, 'Towards a new theory of cold rolling thin foil', Int J Mech Sci, 1987.
Google Scholar
[10]
N. Bay, C. Clemensen, and O. Juelstorp, 'Bond Strength in Cold Roll Bonding', Ann. CIRP, vol. 34, no. 1, 1985.
DOI: 10.1016/s0007-8506(07)61760-0
Google Scholar
[11]
X. Li, G. Zu, M. Ding, Y. Mu, and P. Wang, 'Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing', Mater. Sci. Eng. A, vol. 529, p.485–491, Nov. 2011.
DOI: 10.1016/j.msea.2011.09.087
Google Scholar
[12]
P. Chekhonin et al., 'Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates', Acta Mater., vol. 60, no. 11, p.4661–4671, Jun. 2012.
DOI: 10.1016/j.actamat.2012.04.004
Google Scholar
[13]
O. Bouaziz, J. P. Masse, G. Petitgand, and M. X. Huang, 'A Novel Strong and Ductile TWIP/Martensite Steel Composite', Adv. Eng. Mater., vol. 18, no. 1, p.56–59, Jan. 2016.
DOI: 10.1002/adem.201500113
Google Scholar
[14]
Y. Qiu, N. Kaden, M. Schmidtchen, U. Prahl, H. Biermann, and A. Weidner, 'Laminated TRIP/TWIP Steel Composites Produced by Roll Bonding', Metals, vol. 9, no. 2, p.195, Feb. 2019.
DOI: 10.3390/met9020195
Google Scholar
[15]
M. Seleznev, C. Renzing, M. Schmidtchen, U. Prahl, H. Biermann, and A. Weidner, 'Deformation lenses in a bonding zone of high-alloyed steel laminates manufactured by cold roll bonding', Metals, Apr. 2022.
DOI: 10.3390/met12040590
Google Scholar
[16]
M. Seleznev et al., 'Microstructural evolution of the bonding zone in TRIP-TWIP laminate produced by accumulative roll bonding', Mater. Sci. Eng. A, Feb. 2022.
DOI: 10.1016/j.msea.2022.142866
Google Scholar
[17]
D14 Committee, ASTM - D1876-08 - Test Method for Peel Resistance of Adhesives (T-Peel Test), West Conshohocken, PA.
DOI: 10.1520/d1876-08r23
Google Scholar