Experimental Studies and Simulation of TRIP-TWIP Roll Bonding

Article Preview

Abstract:

To increase the safety of steels in high performance cases like crash energy absorption, even better properties of the materials are necessary. To advance this research, a TWIP and a TRIP steel were combined in a laminated composite via roll bonding at 450 °C with the goal of using accumulative roll bonding (ARB) in later research to further enhance the properties reaching an ultra-fine-grained material. Two different TWIP layer thicknesses (2 mm and 3 mm) were experimentally roll bonded with a 3 mm thick TRIP layer each using a 4-high rolling mill. A modular Python-based simulation incorporating coupled solving of ordinary differential equations of the temperatures and the horizontal stress changes of the layers were implemented to predict deformation and bonding behavior. Simulated results matched well with experimental data in terms of final geometry and temperature, while roll force deviations indicated the need for the refining of the used model. Furthermore, experimentally asymmetric layer relationships at the beginning and the addition of a thin (10 µm) Ni interlayer were found to enhance bond strength in high-strength steel laminates.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1174)

Pages:

9-14

Citation:

Online since:

January 2026

Funder:

The publication of this article was funded by the TU Bergakademie Freiberg 10.13039/501100021786

Export:

Share:

Citation:

* - Corresponding Author

[1] M. Soleimani, A. Kalhor, and H. Mirzadeh, 'Transformation-induced plasticity (TRIP) in advanced steels: A review', Mater. Sci. Eng. A, vol. 795, p.140023, Sep. 2020.

DOI: 10.1016/j.msea.2020.140023

Google Scholar

[2] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, 'Novel ultra-high straining process for bulk materials development of the accumulativer roll bonding (ARB) process', p.5, 1998.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[3] M. Seleznev, J. Mantel, M. Schmidtchen, U. Prahl, H. Biermann, and A. Weidner, 'Steel–Steel Laminates Manufactured via Accumulative Roll Bonding', Steel Res. Int., vol. 96, no. 5, 2025.

DOI: 10.1002/srin.202400472

Google Scholar

[4] M. Schmidtchen, Mehrskalige Modellierung des Walzplattierens und Walzens von Werkstoffverbunden. in Freiberger Forschungshefte / B, no. 372. Institut für Metallformung, TU Bergakademie Freiberg, 2017.

Google Scholar

[5] Th. von Kármán, 'Beitrag zur Theorie des Walzvorganges', Z. Für Angwandte Math. Mech., vol. 5, no. 2, p.139–141, 1925.

DOI: 10.1002/zamm.19250050213

Google Scholar

[6] M. Weiner, M. Schmidtchen, and U. Prahl, 'Extension of the Freiberg layer model by means of elastic-plastic material behavior', Steel Res. Int., 2021.

DOI: 10.1002/srin.202100373

Google Scholar

[7] J. H. Hitchcock and W. Trinks, 'Roll neck bearings', ASME, New York, Report of Special Research Committee on Roll Neck Bearings, 1935.

DOI: 10.1115/1.4057641

Google Scholar

[8] A. Hensel and T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1978.

Google Scholar

[9] N. A. Fleck and K. L. Johnson, 'Towards a new theory of cold rolling thin foil', Int J Mech Sci, 1987.

Google Scholar

[10] N. Bay, C. Clemensen, and O. Juelstorp, 'Bond Strength in Cold Roll Bonding', Ann. CIRP, vol. 34, no. 1, 1985.

DOI: 10.1016/s0007-8506(07)61760-0

Google Scholar

[11] X. Li, G. Zu, M. Ding, Y. Mu, and P. Wang, 'Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing', Mater. Sci. Eng. A, vol. 529, p.485–491, Nov. 2011.

DOI: 10.1016/j.msea.2011.09.087

Google Scholar

[12] P. Chekhonin et al., 'Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates', Acta Mater., vol. 60, no. 11, p.4661–4671, Jun. 2012.

DOI: 10.1016/j.actamat.2012.04.004

Google Scholar

[13] O. Bouaziz, J. P. Masse, G. Petitgand, and M. X. Huang, 'A Novel Strong and Ductile TWIP/Martensite Steel Composite', Adv. Eng. Mater., vol. 18, no. 1, p.56–59, Jan. 2016.

DOI: 10.1002/adem.201500113

Google Scholar

[14] Y. Qiu, N. Kaden, M. Schmidtchen, U. Prahl, H. Biermann, and A. Weidner, 'Laminated TRIP/TWIP Steel Composites Produced by Roll Bonding', Metals, vol. 9, no. 2, p.195, Feb. 2019.

DOI: 10.3390/met9020195

Google Scholar

[15] M. Seleznev, C. Renzing, M. Schmidtchen, U. Prahl, H. Biermann, and A. Weidner, 'Deformation lenses in a bonding zone of high-alloyed steel laminates manufactured by cold roll bonding', Metals, Apr. 2022.

DOI: 10.3390/met12040590

Google Scholar

[16] M. Seleznev et al., 'Microstructural evolution of the bonding zone in TRIP-TWIP laminate produced by accumulative roll bonding', Mater. Sci. Eng. A, Feb. 2022.

DOI: 10.1016/j.msea.2022.142866

Google Scholar

[17] D14 Committee, ASTM - D1876-08 - Test Method for Peel Resistance of Adhesives (T-Peel Test), West Conshohocken, PA.

DOI: 10.1520/d1876-08r23

Google Scholar