Simulative Study on Anisotropic Deformation of a Large Sheet-Hydroformed Motorcycle Fuel Tank

Article Preview

Abstract:

In regard to shaping up a complex-shaped, largely strained industrial forming part, sheet hydroforming (SHF) is one of the primary processes utilized to address these challenges. Before actual tooling fabrication, the finite element (FE) simulation is, nowadays, commonly employed to assess the feasibility of the process and tooling design. Therein, material modelling, especially of the distinguishing deformation anisotropy unavoidable in cold rolled sheet metal, plays a vital role. This study, therefore, seeks to enhance the capability of the FE simulation on sheet hydroforming of an SPC270 mild steel sheet comparatively through the von Mises, Hill’48, and Yld2000-2d yield criteria. Additionally, the hybrid Swift-Voce (HSV) model is applied to refine and extend the experimentally determined uniaxial flow stress curve. The prediction accuracy is evaluated on the basis of two geometrical deviations such as the sheet thickness distribution and tank surface profile. The results show that the Yld2000-2d yield model obviously leads to the most accurate geometric estimation for both evaluation criteria.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1177)

Pages:

3-10

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Siegert, et al., SAE Technical Paper, 1999.

Google Scholar

[2] L.H. Lang, et al.,Hydroforming highlights: sheet hydroforming and tube hydroforming, J. Mater. Proc. Tech. 151 (2004) 165-177.

DOI: 10.1016/j.jmatprotec.2004.04.032

Google Scholar

[3] M. H. Parsa, and P. Darbandi, J. Mater. Proc. Tech. 198 (2008) 381-390.

Google Scholar

[4] A. F. Budai, et al.,Experimental and numerical analyses of sheet hydroforming process for production of an automobile body part, J. Manu. Sci. Eng. 135 (2013) 021014.

Google Scholar

[5] V. Modanloo et al.,Investigation of the effect of process parameters in sheet hydroforming process, Int. J. Interac. Des. Manu. 17 (2023) 3189-3198.

DOI: 10.1007/s12008-023-01373-x

Google Scholar

[6] A. Piccininni et al., Reshaping End-of-Life components by sheet hydroforming: An experimental and numerical analysis, J. Mater. Proc. Tech. 306 (2022) 117650.

DOI: 10.1016/j.jmatprotec.2022.117650

Google Scholar

[7] M. Zampaloni, N. Abedrabbo, and F. Pourboghrat,Experimental and numerical study of stamp hydroforming of sheet metals, Int. J. Mech. Sci. 45 (2003) 1815-1848.

DOI: 10.1016/j.ijmecsci.2003.11.006

Google Scholar

[8] Y. P. Korkolis, and S. Kyriakides,Hydroforming of anisotropic aluminum tubes: Part II analysis, Int. J. Mech. Sci. 53 (2011) 83-90.

DOI: 10.1016/j.ijmecsci.2010.11.004

Google Scholar

[9] F. Pourboghrat, S. Venkatesan, and J. E.LDR and hydroforming limit for deep drawing of AA5754 aluminum sheet, Carsley, J. Manu. Proc. 15 (2013) 600-615.

DOI: 10.1016/j.jmapro.2013.04.003

Google Scholar

[10] R. F. Young, J. E. Bird and J. L. Duncan, J. Appl. Met. Working.1 (1981)11–18.

Google Scholar

[11] F. Barlat, H. Aretz, J. Yoon, M. Karabin, R. Dick,Linear transfomation-based anisotropic yield functions, Int. J. Plast. 21(2005)1009–1039.

DOI: 10.1016/j.ijplas.2004.06.004

Google Scholar

[12] S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai,Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels, Mater. Des. 51 (2013) 756–766.

DOI: 10.1016/j.matdes.2013.04.080

Google Scholar

[13] R. Hill, in: Proceedings of Royal Society, London. 193(1948) 281-297.

Google Scholar

[14] F. Barlat, et al.Plane stress yield function for aluminum alloy sheets-part 1: theory, Int. J. Plast. 19 (2003) 1297–1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar