[1]
C. Liu, F. Li, L. Ma, and H. Cheng, "Advanced Materials for Energy Storage," Advanced Materials, vol. 22, no. 8, Feb. 2010.
DOI: 10.1002/adma.200903328
Google Scholar
[2]
S. Sharma and P. Chand, "Supercapacitor and electrochemical techniques: A brief review," Results Chem, vol. 5, p.100885, Jan. 2023.
DOI: 10.1016/j.rechem.2023.100885
Google Scholar
[3]
F. Bonaccorso et al., "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage," Science (1979), vol. 347, no. 6217, Jan. 2015.
DOI: 10.1126/science.1246501
Google Scholar
[4]
S. P. S. Badwal, S. S. Giddey, C. Munnings, A. I. Bhatt, and A. F. Hollenkamp, "Emerging electrochemical energy conversion and storage technologies," Front Chem, vol. 2, Sep. 2014.
DOI: 10.3389/fchem.2014.00079
Google Scholar
[5]
P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nat Mater, vol. 7, no. 11, p.845–854, Nov. 2008.
DOI: 10.1038/nmat2297
Google Scholar
[6]
B. E. Conway, Electrochemical Supercapacitors. Boston, MA: Springer US, 1999.
DOI: 10.1007/978-1-4757-3058-6
Google Scholar
[7]
S. Shin, J. W. Gittins, C. J. Balhatchet, A. Walsh, and A. C. Forse, "Metal–Organic Framework Supercapacitors: Challenges and Opportunities," Adv Funct Mater, Sep. 2023.
DOI: 10.1002/adfm.202308497
Google Scholar
[8]
M. Ko, L. Mendecki, and K. A. Mirica, "Conductive two-dimensional metal–organic frameworks as multifunctional materials," Chemical Communications, vol. 54, no. 57, p.7873–7891, 2018.
DOI: 10.1039/C8CC02871K
Google Scholar
[9]
L. Niu et al., "Conductive Metal–Organic Frameworks for Supercapacitors," Advanced Materials, vol. 34, no. 52, Dec. 2022.
DOI: 10.1002/adma.202200999
Google Scholar
[10]
H. Zhong, M. Wang, G. Chen, R. Dong, and X. Feng, "Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges," ACS Nano, vol. 16, no. 2, p.1759–1780, Feb. 2022.
DOI: 10.1021/acsnano.1c10544
Google Scholar
[11]
K. W. Nam et al., "Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries," Nat Commun, vol. 10, no. 1, p.4948, Oct. 2019.
DOI: 10.1038/s41467-019-12857-4
Google Scholar
[12]
D. Sheberla, J. C. Bachman, J. S. Elias, C.-J. Sun, Y. Shao-Horn, and M. Dincă, "Conductive MOF electrodes for stable supercapacitors with high areal capacitance," Nat Mater, vol. 16, no. 2, p.220–224, Feb. 2017.
DOI: 10.1038/nmat4766
Google Scholar
[13]
L. Chen, H.-F. Wang, C. Li, and Q. Xu, "Bimetallic metal–organic frameworks and their derivatives," Chem Sci, vol. 11, no. 21, p.5369–5403, 2020.
DOI: 10.1039/D0SC01432J
Google Scholar
[14]
S. A. E. Naser, K. O. Badmus, and L. Khotseng, "Synthesis, Properties, and Applications of Metal Organic Frameworks Supported on Graphene Oxide," Coatings, vol. 13, no. 8, p.1456, Aug. 2023.
DOI: 10.3390/coatings13081456
Google Scholar
[15]
N. L. Wulan Septiani et al., "Selective synthesis of monodisperse bimetallic nickel–cobalt phosphates with different nanoarchitectures for battery-like supercapacitors," J Mater Chem A Mater, vol. 12, no. 23, p.14045–14058, 2024.
DOI: 10.1039/D3TA06584G
Google Scholar
[16]
R. Pech and J. Pickardt, "catena -Triaqua-μ-[1,3,5-benzenetricarboxylato(2–)]-copper(II)," Acta Crystallogr C, vol. 44, no. 6, p.992–994, Jun. 1988.
DOI: 10.1107/S0108270188002902
Google Scholar
[17]
L. Zhou, Z. Niu, X. Jin, L. Tang, and L. Zhu, "Effect of Lithium Doping on the Structures and CO 2 Adsorption Properties of Metal‐Organic Frameworks HKUST‐1," ChemistrySelect, vol. 3, no. 45, p.12865–12870, Dec. 2018.
DOI: 10.1002/slct.201803164
Google Scholar
[18]
S. Denning, A. A. Majid, J. M. Lucero, J. M. Crawford, M. A. Carreon, and C. A. Koh, "Metal–Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity," ACS Appl Mater Interfaces, vol. 12, no. 47, p.53510–53518, Nov. 2020.
DOI: 10.1021/acsami.0c15675
Google Scholar
[19]
M. J. Manos, E. E. Moushi, G. S. Papaefstathiou, and A. J. Tasiopoulos, "New Zn 2+ Metal Organic Frameworks with Unique Network Topologies from the Combination of Trimesic Acid and Amino-Alcohols," Cryst Growth Des, vol. 12, no. 11, p.5471–5480, Nov. 2012.
DOI: 10.1021/cg301047w
Google Scholar
[20]
K. K. Dewi et al., "One-Dimensional HKUST-1-Decorated Glassy Carbon Electrode for the Sensitive Electrochemical Immunosensor of NS1 Dengue Virus Serotype-3," ACS Omega, vol. 9, no. 1, p.1454–1462, Jan. 2024.
DOI: 10.1021/acsomega.3c07856
Google Scholar
[21]
F. Tian et al., "Synthesis of bimetallic–organic framework Cu/Co-BTC and the improved performance of thiophene adsorption," RSC Adv, vol. 9, no. 27, p.15642–15647, 2019.
DOI: 10.1039/C9RA02372K
Google Scholar
[22]
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, "A Practical Beginner's Guide to Cyclic Voltammetry," J Chem Educ, vol. 95, no. 2, p.197–206, Feb. 2018.
DOI: 10.1021/acs.jchemed.7b00361
Google Scholar
[23]
X. Hang, J. Zhao, Y. Xue, R. Yang, and H. Pang, "Synergistic effect of Co/Ni bimetallic metal–organic nanostructures for enhanced electrochemical energy storage," J Colloid Interface Sci, vol. 628, p.389–396, Dec. 2022.
DOI: 10.1016/j.jcis.2022.07.136
Google Scholar
[24]
Y. Jiao et al., "Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors," J Mater Chem A Mater, vol. 5, no. 3, p.1094–1102, 2017.
DOI: 10.1039/C6TA09805C
Google Scholar
[25]
X. Hu et al., "Hierarchical CuCo2O4@CoS-Cu/Co-MOF core-shell nanoflower derived from copper/cobalt bimetallic metal–organic frameworks for supercapacitors," J Colloid Interface Sci, vol. 600, p.72–82, Oct. 2021.
DOI: 10.1016/j.jcis.2021.05.008
Google Scholar
[26]
A. Nuruddin et al., "Oxygen Reduction Reaction Mechanism on the Square Paddle-Wheel Cage Site of TM-BTC (TM=Mn, Fe, Cu) Metal-Organic Framework," Journal of Mathematical and Fundamental Sciences, vol. 54, no. 2, p.233–248, Dec. 2022.
DOI: 10.5614/j.math.fund.sci.2022.54.2.2
Google Scholar
[27]
M. K. Agusta, A. G. Saputro, V. V. Tanuwijaya, N. N. Hidayat, and H. K. Dipojono, "Hydrogen Adsorption on Fe-based Metal Organic Frameworks: DFT Study," Procedia Eng, vol. 170, p.136–140, 2017.
DOI: 10.1016/j.proeng.2017.03.030
Google Scholar