Study of the Potential of Typha Domingensis Fibers as Reinforcement for Composite Materials

Article Preview

Abstract:

This study investigates the potential of typha domingensis fibers to be used as reinforcement in composite materials. Morphological, mechanical, and thermal analyses were conducted on fibers extracted from leaves and stems using various methods. The leaf fibers (LNF-00, LRD-41, LRS-41), with transverse dimensions ranging between 185 to 244 µm, were on average 48% thinner than stem fibers (SNF-00, SRD-20, SRS-20), whose transverse dimensions ranged from 305 to 334 µm. Transverse dimensions variations were most pronounced for fibers retted in distilled water (65%), followed by those retted in seawater (47%) and mechanically processed fibers (37%). Stem fibers subjected to seawater retting (SRS-20) exhibited less dispersion in mechanical properties, with a Young’s modulus of 2.2 GPa and a tensile strength of 55.9 MPa. Overall, leaf fibers outperformed stem fibers, with average increases of 38, 60, and 31% for Young’s modulus, tensile strength, and elongation at failure, respectively. Finally, thermal analysis revealed that fibers retted in distilled water provided the highest thermal stability, attributed to a reduction in lignin and hemicelluloses.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1177)

Pages:

55-67

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in materials, 6, 226.

DOI: 10.3389/fmats.2019.00226

Google Scholar

[2] Kurien, R. A., Anil, M. M., Mohan, S. S., & Thomas, J. A. (2023). Natural fiber composites as sustainable resources for emerging applications-a review. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2023.04.363

Google Scholar

[3] Belouadah, Z., Ati, A., Rokbi, M., Bezazi, A., & Imad, A. (2014). Optimisation des méthodes d'extraction et caractérisation mécanique de la fibre Alfa en vue de son application comme renfort des matériaux composites. Journal of Materials, Processes and Environment, 2(1), 51-57.

Google Scholar

[4] Jusoh, A. F., Rejab, M. R. M., Siregar, J. P., & Bachtiar, D. (2016). Natural fiber reinforced composites: a review on potential for corrugated core of sandwich structures. In MATEC Web of conferences (Vol. 74, p.00033). EDP Sciences.

DOI: 10.1051/matecconf/20167400033

Google Scholar

[5] Sreekala, M. S., Kumaran, M. G. & Thomas, S. (1997). Oil palm fibres: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied polymer science, 66(5), pp.821-835.

DOI: 10.1002/(sici)1097-4628(19971031)66:5<821::aid-app2>3.0.co;2-x

Google Scholar

[6] Alagirusamy, R., & Das, A. (2011). Yarns: production, processability and properties. In Fibrous and composite materials for civil engineering applications (pp.29-61). Woodhead Publishing.

DOI: 10.1533/9780857095583.1.29

Google Scholar

[7] Benkhelladi, A., Laouici, H., & Bouchoucha, A. (2020). Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres. The International Journal of Advanced Manufacturing Technology, 108, 895-916.

DOI: 10.1007/s00170-020-05427-2

Google Scholar

[8] Smail, Y. B., Moumen, A. E., Imad, A., Lmai, F., & Ezahri, M. (2021). Effect of heat treatment on the mechanical properties of jute yarns. Journal of Composite Materials, 55(20), 2777-2792.

DOI: 10.1177/0021998321999103

Google Scholar

[9] Gassan, J., & Bledzki, A. K. (1999). Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science, 71(4), 623-629.

DOI: 10.1002/(sici)1097-4628(19990124)71:4<623::aid-app14>3.0.co;2-k

Google Scholar

[10] Xiao, B., Sun, X., & Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer degradation and stability, 74(2), 307-319.

DOI: 10.1016/s0141-3910(01)00163-x

Google Scholar

[11] Assefa, A., Admas, A., & Haile, L. (2024). Extraction of Fiber from Schoenoplectus acutus Plant and Characterization of Its Properties. Advances in Materials Science and Engineering, 2024(1), 8834268.

DOI: 10.1155/2024/8834268

Google Scholar

[12] Sheferaw, L., Gideon, R. K., Ejegu, H., & Gatew, Y. (2023). Extraction and characterization of fiber from the stem of Cyperus papyrus plant. Journal of Natural Fibers, 20(1), 2149661.

DOI: 10.1080/15440478.2022.2149661

Google Scholar

[13] Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1632-1637.

DOI: 10.1016/j.compositesa.2008.07.007

Google Scholar

[14] Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149.

DOI: 10.1016/0032-3861(96)00144-9

Google Scholar

[15] Singh, G., Jose, S., Kaur, D., & Soun, B. (2022). Extraction and characterization of corn leaf fiber. Journal of natural fibers, 19(5), 1581-1591.

DOI: 10.1080/15440478.2020.1787914

Google Scholar

[16] Adamu, B. F. (2021). Extraction of Ethiopian Kusha fiber from Ethiopian Kusha Plant by different methods and characterization of its morphological and mechanical properties. Results in Materials, 12, 100238.

DOI: 10.1016/j.rinma.2021.100238

Google Scholar

[17] Betené, A. D. O., Betené, F. E., Ngali, F. E., Noah, P. M. A., Ndiwé, B., Soppie, A. G., ... & Moukené, R. (2022). Influence of sampling area and extraction method on the thermal, physical and mechanical properties of Cameroonian Ananas comosus leaf fibers. Heliyon, 8(8).

DOI: 10.1016/j.heliyon.2022.e10127

Google Scholar

[18] Sana, R., Mounir, J., & Slah, M. (2014). Study of structure and properties of tunisian typha leaf fibers. International Journal of Engineering Research & Technology (IJERT), 3.

Google Scholar

[19] Asmare, F. W., Liu, X., Qiao, G., Li, R., & Wu, D. (2024). Investigation and application of different extraction techniques for the production of finer bamboo fibres. Advances in Bamboo Science, 7, 100070.

DOI: 10.1016/j.bamboo.2024.100070

Google Scholar

[20] Anafack, S. M., Harzallah, O., Nkemaja, D. E., Huisken, P. W. M., Decker, A., Tagne, R. N. S., ... & Njeugna, E. (2023). Effects of extraction techniques on textile properties of William banana peduncle fibers. Industrial Crops and Products, 201, 116912.

DOI: 10.1016/j.indcrop.2023.116912

Google Scholar

[21] Amel, K., & Maria, B. (2019). Effet des techniques d'extraction des fibres végétales sur leurs caractéristiques physiques, chimiques et mécaniques (Doctoral dissertation, Ph. D. Dissertation, Université Mohamed Boudiaf-Msila).

Google Scholar

[22] Ramesh, M., C. Deepa, M. Tamil Selvan & K. Hemachandra Reddy. (2020). Effet de l'alcalinisation sur la caractérisation des composites époxy renforcés de fibres d'herbe de scirpe mûr (Typha domingensis). Journal des fibres naturelles 1–12. Doi:10. 1080/15440478.2020.1764443.

Google Scholar

[23] Sana, R. (2016). Etude du potentiel textile des fibres de typha. Thèse de doctorat, Ecole Nationale d'Ingénieurs de Monastir, Tunisie.

Google Scholar

[24] Hasan, M., Rahman, M., Chen, Y., & Cicek, N. (2022). Optimization of typha fibre extraction and properties for bio-Composite aApplications using desirability function analysis. Polymers, 14(9).

DOI: 10.3390/polym14091685

Google Scholar

[25] Gregoire, M., Luycker, E.DE & Wagner, P. (2019). Etude de l'extraction des fibres de chanvre longs brins et impacr sur leur potential de renfort.

Google Scholar

[26] Garat, W., Corn, S., Le Moigne, N., Beaugrand, J., & Bergeret, A. (2018). Analysis of the morphometric variations in natural fibres by automated laser scanning: Towards an efficient and reliable assessment of the cross-sectional area. Composites Part A, p.114–123.

DOI: 10.1016/j.compositesa.2018.02.018

Google Scholar

[27] Mlik, Y.B. (2018). Valorisation des fibres de kénaf dans des applications textiles et para textiles. Thèse de doctorat, Ecole Nationale d'Ingénieurs de Monastir.

Google Scholar

[28] Mortazavi S. Majid and Moghaddam M.Kamali.(2010).An Analysis of Structure and Properties of a Natural Cellulosic Fiber (Leafiran), Fibers and Polymers, vol. 11, no. 6, pp.877-882.

DOI: 10.1007/s12221-010-0877-z

Google Scholar

[29] Marzoug I. B. (2010). Caractérisation et modification des fibres d'alfa en vue de leur utilisation en application textile, Thèse de doctorat, 'Ecole Nationale d'Ingénieurs de Monastir, Tunisie, 2010.

Google Scholar

[30] Gèze, J.-B. (1922). Utilisation des typha en France. Revue de botanique appliquée et d'agriculture coloniale, 2(14), 551–557.

DOI: 10.3406/jatba.1922.1449

Google Scholar

[31] Gomina, M., Rouch, M., Roy, A., & Duriatti, D. (2019). Représentativité des essais de vieillissement accélérés dans le cas des composites biosourcés incorporant des fibres végétales. In 21ème Journées Nationales sur les Composites.

Google Scholar

[32] Kabir, M. M., Wang, H., Lau, K. T., Cardona, F., & Aravinthan, T. (2012). Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites Part B: Engineering, 43(2), 159-169.

DOI: 10.1016/j.compositesb.2011.06.003

Google Scholar

[33] Sinha, E., & Rout, S. K. (2009). Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bulletin of materials science, 32, 65-76.

DOI: 10.1007/s12034-009-0010-3

Google Scholar

[34] Charlet, K. (2008). Contribution à l'étude de composites unidirectionnels renforcés par des fibres de lin: relation entre la microstructure de la fibre et ses propriétés mécaniques (Doctoral dissertation, Université de Caen/Basse-Normandie).

Google Scholar

[35] Baley, C. (2004). Influence of kink bands on the tensile strength of flax fibers. Journal of materials science, 39(1), 331-334.

DOI: 10.1023/b:jmsc.0000007768.63055.ae

Google Scholar

[36] Nilsson, T., & Gustafsson, P. J. (2007). Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Composites Part A: Applied Science and Manufacturing, 38(7), 1722-1728.

DOI: 10.1016/j.compositesa.2007.01.018

Google Scholar