[1]
Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in materials, 6, 226.
DOI: 10.3389/fmats.2019.00226
Google Scholar
[2]
Kurien, R. A., Anil, M. M., Mohan, S. S., & Thomas, J. A. (2023). Natural fiber composites as sustainable resources for emerging applications-a review. Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2023.04.363
Google Scholar
[3]
Belouadah, Z., Ati, A., Rokbi, M., Bezazi, A., & Imad, A. (2014). Optimisation des méthodes d'extraction et caractérisation mécanique de la fibre Alfa en vue de son application comme renfort des matériaux composites. Journal of Materials, Processes and Environment, 2(1), 51-57.
Google Scholar
[4]
Jusoh, A. F., Rejab, M. R. M., Siregar, J. P., & Bachtiar, D. (2016). Natural fiber reinforced composites: a review on potential for corrugated core of sandwich structures. In MATEC Web of conferences (Vol. 74, p.00033). EDP Sciences.
DOI: 10.1051/matecconf/20167400033
Google Scholar
[5]
Sreekala, M. S., Kumaran, M. G. & Thomas, S. (1997). Oil palm fibres: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied polymer science, 66(5), pp.821-835.
DOI: 10.1002/(sici)1097-4628(19971031)66:5<821::aid-app2>3.0.co;2-x
Google Scholar
[6]
Alagirusamy, R., & Das, A. (2011). Yarns: production, processability and properties. In Fibrous and composite materials for civil engineering applications (pp.29-61). Woodhead Publishing.
DOI: 10.1533/9780857095583.1.29
Google Scholar
[7]
Benkhelladi, A., Laouici, H., & Bouchoucha, A. (2020). Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres. The International Journal of Advanced Manufacturing Technology, 108, 895-916.
DOI: 10.1007/s00170-020-05427-2
Google Scholar
[8]
Smail, Y. B., Moumen, A. E., Imad, A., Lmai, F., & Ezahri, M. (2021). Effect of heat treatment on the mechanical properties of jute yarns. Journal of Composite Materials, 55(20), 2777-2792.
DOI: 10.1177/0021998321999103
Google Scholar
[9]
Gassan, J., & Bledzki, A. K. (1999). Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science, 71(4), 623-629.
DOI: 10.1002/(sici)1097-4628(19990124)71:4<623::aid-app14>3.0.co;2-k
Google Scholar
[10]
Xiao, B., Sun, X., & Sun, R. (2001). Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer degradation and stability, 74(2), 307-319.
DOI: 10.1016/s0141-3910(01)00163-x
Google Scholar
[11]
Assefa, A., Admas, A., & Haile, L. (2024). Extraction of Fiber from Schoenoplectus acutus Plant and Characterization of Its Properties. Advances in Materials Science and Engineering, 2024(1), 8834268.
DOI: 10.1155/2024/8834268
Google Scholar
[12]
Sheferaw, L., Gideon, R. K., Ejegu, H., & Gatew, Y. (2023). Extraction and characterization of fiber from the stem of Cyperus papyrus plant. Journal of Natural Fibers, 20(1), 2149661.
DOI: 10.1080/15440478.2022.2149661
Google Scholar
[13]
Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1632-1637.
DOI: 10.1016/j.compositesa.2008.07.007
Google Scholar
[14]
Joseph, K., Thomas, S., & Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37(23), 5139-5149.
DOI: 10.1016/0032-3861(96)00144-9
Google Scholar
[15]
Singh, G., Jose, S., Kaur, D., & Soun, B. (2022). Extraction and characterization of corn leaf fiber. Journal of natural fibers, 19(5), 1581-1591.
DOI: 10.1080/15440478.2020.1787914
Google Scholar
[16]
Adamu, B. F. (2021). Extraction of Ethiopian Kusha fiber from Ethiopian Kusha Plant by different methods and characterization of its morphological and mechanical properties. Results in Materials, 12, 100238.
DOI: 10.1016/j.rinma.2021.100238
Google Scholar
[17]
Betené, A. D. O., Betené, F. E., Ngali, F. E., Noah, P. M. A., Ndiwé, B., Soppie, A. G., ... & Moukené, R. (2022). Influence of sampling area and extraction method on the thermal, physical and mechanical properties of Cameroonian Ananas comosus leaf fibers. Heliyon, 8(8).
DOI: 10.1016/j.heliyon.2022.e10127
Google Scholar
[18]
Sana, R., Mounir, J., & Slah, M. (2014). Study of structure and properties of tunisian typha leaf fibers. International Journal of Engineering Research & Technology (IJERT), 3.
Google Scholar
[19]
Asmare, F. W., Liu, X., Qiao, G., Li, R., & Wu, D. (2024). Investigation and application of different extraction techniques for the production of finer bamboo fibres. Advances in Bamboo Science, 7, 100070.
DOI: 10.1016/j.bamboo.2024.100070
Google Scholar
[20]
Anafack, S. M., Harzallah, O., Nkemaja, D. E., Huisken, P. W. M., Decker, A., Tagne, R. N. S., ... & Njeugna, E. (2023). Effects of extraction techniques on textile properties of William banana peduncle fibers. Industrial Crops and Products, 201, 116912.
DOI: 10.1016/j.indcrop.2023.116912
Google Scholar
[21]
Amel, K., & Maria, B. (2019). Effet des techniques d'extraction des fibres végétales sur leurs caractéristiques physiques, chimiques et mécaniques (Doctoral dissertation, Ph. D. Dissertation, Université Mohamed Boudiaf-Msila).
Google Scholar
[22]
Ramesh, M., C. Deepa, M. Tamil Selvan & K. Hemachandra Reddy. (2020). Effet de l'alcalinisation sur la caractérisation des composites époxy renforcés de fibres d'herbe de scirpe mûr (Typha domingensis). Journal des fibres naturelles 1–12. Doi:10. 1080/15440478.2020.1764443.
Google Scholar
[23]
Sana, R. (2016). Etude du potentiel textile des fibres de typha. Thèse de doctorat, Ecole Nationale d'Ingénieurs de Monastir, Tunisie.
Google Scholar
[24]
Hasan, M., Rahman, M., Chen, Y., & Cicek, N. (2022). Optimization of typha fibre extraction and properties for bio-Composite aApplications using desirability function analysis. Polymers, 14(9).
DOI: 10.3390/polym14091685
Google Scholar
[25]
Gregoire, M., Luycker, E.DE & Wagner, P. (2019). Etude de l'extraction des fibres de chanvre longs brins et impacr sur leur potential de renfort.
Google Scholar
[26]
Garat, W., Corn, S., Le Moigne, N., Beaugrand, J., & Bergeret, A. (2018). Analysis of the morphometric variations in natural fibres by automated laser scanning: Towards an efficient and reliable assessment of the cross-sectional area. Composites Part A, p.114–123.
DOI: 10.1016/j.compositesa.2018.02.018
Google Scholar
[27]
Mlik, Y.B. (2018). Valorisation des fibres de kénaf dans des applications textiles et para textiles. Thèse de doctorat, Ecole Nationale d'Ingénieurs de Monastir.
Google Scholar
[28]
Mortazavi S. Majid and Moghaddam M.Kamali.(2010).An Analysis of Structure and Properties of a Natural Cellulosic Fiber (Leafiran), Fibers and Polymers, vol. 11, no. 6, pp.877-882.
DOI: 10.1007/s12221-010-0877-z
Google Scholar
[29]
Marzoug I. B. (2010). Caractérisation et modification des fibres d'alfa en vue de leur utilisation en application textile, Thèse de doctorat, 'Ecole Nationale d'Ingénieurs de Monastir, Tunisie, 2010.
Google Scholar
[30]
Gèze, J.-B. (1922). Utilisation des typha en France. Revue de botanique appliquée et d'agriculture coloniale, 2(14), 551–557.
DOI: 10.3406/jatba.1922.1449
Google Scholar
[31]
Gomina, M., Rouch, M., Roy, A., & Duriatti, D. (2019). Représentativité des essais de vieillissement accélérés dans le cas des composites biosourcés incorporant des fibres végétales. In 21ème Journées Nationales sur les Composites.
Google Scholar
[32]
Kabir, M. M., Wang, H., Lau, K. T., Cardona, F., & Aravinthan, T. (2012). Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Composites Part B: Engineering, 43(2), 159-169.
DOI: 10.1016/j.compositesb.2011.06.003
Google Scholar
[33]
Sinha, E., & Rout, S. K. (2009). Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bulletin of materials science, 32, 65-76.
DOI: 10.1007/s12034-009-0010-3
Google Scholar
[34]
Charlet, K. (2008). Contribution à l'étude de composites unidirectionnels renforcés par des fibres de lin: relation entre la microstructure de la fibre et ses propriétés mécaniques (Doctoral dissertation, Université de Caen/Basse-Normandie).
Google Scholar
[35]
Baley, C. (2004). Influence of kink bands on the tensile strength of flax fibers. Journal of materials science, 39(1), 331-334.
DOI: 10.1023/b:jmsc.0000007768.63055.ae
Google Scholar
[36]
Nilsson, T., & Gustafsson, P. J. (2007). Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Composites Part A: Applied Science and Manufacturing, 38(7), 1722-1728.
DOI: 10.1016/j.compositesa.2007.01.018
Google Scholar