Synthesis of Activated Carbon Derived from Banana Peel for Application as a Catalyst Support in Fuel Cells

Article Preview

Abstract:

Hydrogen, a zero-carbon energy source with high energy density, is widely used in Proton Exchange Membrane Fuel Cells (PEMFC), where Membrane Electrode Assembly (MEA) plays an important role. This study examines the fabrication of MEAs using the Catalyst Coated Membrane (CCM) technique by airbrush spray and ultrasonic spray methods, using Pt/C catalysts on activated carbon from kepok banana peel (soft carbon) and carbon nanotubes (CNT). Activated carbon soaked with 1M NaOH for 3 hours showed a surface area of 163.075 m²/g, exceeding that of CNTs (101.466 m²/g). The Pt/C catalyst with 1M3H-1 configuration achieved the highest Pt content (52.99 wt%). The ultrasonic spray ensured an even distribution of the catalyst, with a power density of 0.167 mW/cm² (1M3H-1) achieved faster. Although the airbrush spray reaches 0.889 mW/cm² (CNT1), the time required is longer, making the ultrasonic spray more efficient.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1177)

Pages:

87-94

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. Bonifácio, J. O. A. Paschoal, M. Linardi, and R. Cuenca, "Catalyst layer optimization by surface tension control during ink formulation of membrane electrode assemblies in proton exchange membrane fuel cell," Journal of Power Sources, vol. 196, no. 10, pp.4680-4685, 2011/05/15/ 2011.

DOI: 10.1016/j.jpowsour.2011.01.010

Google Scholar

[2] Y. Devrim and A. Albostan, "Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane," International Journal of Hydrogen Energy, vol. 40, no. 44, pp.15328-15335, 2015/11/26/ 2015.

DOI: 10.1016/j.ijhydene.2015.02.078

Google Scholar

[3] D. Rohendi, E. H. Majlan, A. B. Mohamad, W. R. Wan Daud, A. A. Hassan Kadhum, and L. K. Shyuan, "Characterization of electrodes and performance tests on MEAs with varying platinum content and under various operational conditions," International Journal of Hydrogen Energy, vol. 38, no. 22, pp.9431-9437, 2013/07/26/ 2013.

DOI: 10.1016/j.ijhydene.2013.03.093

Google Scholar

[4] W. Xu and K. Scott, "The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance," International Journal of Hydrogen Energy, vol. 35, no. 21, pp.12029-12037, 2010/11/01/ 2010.

DOI: 10.1016/j.ijhydene.2010.08.055

Google Scholar

[5] T.-H. Kim, J. H. Yoo, T. Maiyalagan, and S.-C. Yi, "Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells," Applied Surface Science, vol. 481, pp.777-784, 2019/07/01/ 2019.

DOI: 10.1016/j.apsusc.2019.03.113

Google Scholar

[6] P. C. Okonkwo, I. Ben Belgacem, W. Emori, and P. C. Uzoma, "Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review," International Journal of Hydrogen Energy, vol. 46, no. 55, pp.27956-27973, 2021/08/10/ 2021.

DOI: 10.1016/j.ijhydene.2021.06.032

Google Scholar

[7] HENRY F. ARITONANG and V. S. KAMU, "PENGEMBANGAN TEKNOLOGI SINTESIS NANOPARTIKEL PLATINA BERBASIS Nata-de-Coco SEBAGAI KATALIS SEL BAHAN BAKAR HIDROGEN," U. S. RATULANGI, Ed., ed, 2016.

Google Scholar

[8] M. Mougenot, A. Caillard, P. Brault, S. Baranton, and C. Coutanceau, "High Performance plasma sputtered PdPt fuel cell electrodes with ultra low loading," International Journal of Hydrogen Energy, vol. 36, no. 14, pp.8429-8434, 2011/07/01/ 2011.

DOI: 10.1016/j.ijhydene.2011.04.080

Google Scholar

[9] M. Cavarroc et al., "Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings," Electrochemistry Communications, vol. 11, no. 4, pp.859-861, 2009/04/01/ 2009.

DOI: 10.1016/j.elecom.2009.02.012

Google Scholar

[10] M. S. Saha, A. F. Gullá, R. J. Allen, and S. Mukerjee, "High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition," Electrochimica Acta, vol. 51, no. 22, pp.4680-4692, 2006/06/05/ 2006.

DOI: 10.1016/j.electacta.2006.01.006

Google Scholar

[11] Andrea F. Gullá, Madhu Sudan Saha, R. J. A. and, and S. Mukerjee, "Dual Ion-Beam-Assisted Deposition as a Method to Obtain Low Loading-High Performance Electrodes for PEMFCs," Electrochemical and Solid-State Letters, vol. 8, 10, 2005.

DOI: 10.1149/1.2008887

Google Scholar

[12] Andrea F. Gullá, Madhu Sudan Saha, R. J. A. and, and S. Mukerjee, "Toward Improving the Performance of PEM Fuel Cell by Using Mix Metal Electrodes Prepared by Dual IBAD," Journal of The Electrochemical Society, vol. 153, 2, 2005.

DOI: 10.1149/1.2165571

Google Scholar

[13] N. Ramaswamy et al., "Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method," Electrochimica Acta, vol. 54, no. 26, pp.6756-6766, 2009/11/01/ 2009.

DOI: 10.1016/j.electacta.2009.06.040

Google Scholar

[14] I.-S. Park, W. Li, and A. Manthiram, "Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells," Journal of Power Sources, vol. 195, no. 20, pp.7078-7082, 2010/10/15/ 2010.

DOI: 10.1016/j.jpowsour.2010.05.004

Google Scholar

[15] Madhu S. Saha, Dzmitry Malevich, Ela Halliop, Jon G. Pharoah, B. A. P. and, and K. Karan, "Electrochemical Activity and Catalyst Utilization of Low Pt and Thickness Controlled Membrane Electrode Assemblies," Journal of The Electrochemical Society, vol. 158, 5, 2011.

DOI: 10.1149/1.3559188

Google Scholar

[16] M. Saha, D. Paul, D. Malevich, B. Peppley, and K. Karan, "Preparation of Ultra-Thin Catalyst Layers by Piezo electric Printer for PEMFCs Applications," ECS Trans, 06/30 2009.

DOI: 10.1149/1.3210761

Google Scholar

[17] A. D. Taylor, E. Y. Kim, V. P. Humes, J. Kizuka, and L. T. Thompson, "Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells," Journal of Power Sources, vol. 171, no. 1, pp.101-106, 2007/09/19/ 2007.

DOI: 10.1016/j.jpowsour.2007.01.024

Google Scholar

[18] A. M. Chaparro, P. Ferreira-Aparicio, M. A. Folgado, A. J. Martín, and L. Daza, "Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane," Journal of Power Sources, vol. 196, no. 9, pp.4200-4208, 2011/05/01/ 2011.

DOI: 10.1016/j.jpowsour.2010.09.096

Google Scholar

[19] B. Millington, V. Whipple, and B. G. Pollet, "A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique," Journal of Power Sources, vol. 196, no. 20, pp.8500-8508, 2011/10/15/ 2011.

DOI: 10.1016/j.jpowsour.2011.06.024

Google Scholar

[20] T.-H. Huang, H.-L. Shen, T.-C. Jao, F.-B. Weng, and A. Su, "Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine," International Journal of Hydrogen Energy, vol. 37, no. 18, pp.13872-13879, 2012/09/01/ 2012.

DOI: 10.1016/j.ijhydene.2012.04.108

Google Scholar

[21] K.-H. Kim et al., "The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method," International Journal of Hydrogen Energy, vol. 35, no. 5, pp.2119-2126, 2010/03/01/ 2010.

DOI: 10.1016/j.ijhydene.2009.11.058

Google Scholar

[22] A. Bianco et al., "Carbon science perspective in 2020: Current research and future challenges," Carbon, vol. 161, pp.373-391, 2020/05/01/ 2020.

Google Scholar

[23] G. V. Bianco, N. Ditaranto, and M. Quattrone, "Pt/C catalysts supported on different carbon materials: Characterization and performance in PEMFC," International Journal of Hydrogen Energy, vol. 45, no. 12, p.6991–7000, 2020.

Google Scholar

[24] Q. Shi, Gao, L., et al, "Soft carbon derived from biomass for electrochemical energy storage," Journal of Materials Chemistry vol. 7, p.32, 2019.

Google Scholar

[25] A. C. Fernandes and E. A. Ticianelli, "A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cells," Journal of Power Sources, vol. 193, no. 2, pp.547-554, 2009/09/05/ 2009.

DOI: 10.1016/j.jpowsour.2009.04.038

Google Scholar

[26] M. T. Sembiring and T. S. Sinaga, "ARANG AKTIF (Pengenalan dan Proses Pembuatannya)," USU digital library, 2003.

Google Scholar

[27] S. Fatimah, R. Ragadhita, D. F. A. Husaeni, and A. B. D. Nandiyanto, "How to Calculate Crystallite Size from X-Ray Diffraction(XRD) using Scherrer Method," ASEAN Journal of Science and Engineering vol. 2, 1, pp.65-76, 2022.

DOI: 10.17509/ajse.v2i1.37647

Google Scholar

[28] A. Z. Zazira, Fachraniah, and Ridwan, "PENGARUH JENIS AKTIVATOR TERHADAP KARAKTERISTIK KARBON AKTIF BERBAHAN AMPAS TEBU," Jurnal Teknologi, vol. 24, 1, pp.9-15, April 2024 2022.

DOI: 10.30811/teknologi.v24i1.4973

Google Scholar

[29] F. Fatimah, L. Hakim, and A. Nur, "Pengaruh bahan aktivator terhadap karakteristik karbon aktif dari ampas tebu," Jurnal Rekayasa Kimia dan Lingkungan, vol. 3, 2, pp.45-52, 2022.

DOI: 10.56444/cjce.v4i1.3347

Google Scholar

[30] Garuda, "Pengaruh bahan aktivator pada pembuatan karbon aktif tempurung kelapa," Jurnal Teknik Kimia, vol. 5, 1, pp.15-23, 2021.

DOI: 10.24111/jrihh.v2i1.911

Google Scholar

[31] B. Fang, N. K. Chaudhari, M.-S. Kim, J. H. Kim, and J.-S. Yu, "Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell," Journal of the American Chemical Society, vol. 131, no. 42, pp.15330-15338, 2009/10/28 2009.

DOI: 10.1021/ja905749e

Google Scholar