Effects of Grewia Bicolor (GB) Fiber Extraction Methods in the Reinforcement of a Biosourced Detarium Microcarpum(DM) Tannin Matrix Material

Article Preview

Abstract:

This work aims to evaluate the effect of extraction methods for Grewia bicolor (GB) fiber in the reinforcement of a biosourced material with a Detarium Microcarpum (DM) tannin matrix. GB fibers were extracted by biological retting and chemical extraction in sodium hydroxide (NaOH) solutions at concentrations of 2% and 5%, respectively, and sampled from three plant zones: bottom, middle, and top. These different fiber families were physically characterized (moisture content, water absorption, density) and mechanically tested under tensile loading, followed by multivariate statistical analysis using Multivariate Analysis Of Variance (MANOVA). Tannin extracted from DM bark was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-ToF) mass spectrometry, and its reactivity with formaldehyde was evaluated. A biosourced resin was then formulated using DM tannin and Acacia nilotica as a natural hardener. This resin was characterized by measuring hydrogen potential (pH), dry extract, and gel time. Composite panels were produced by combining the formulated resin with the various fiber families at a 30% reinforcement rate. These composites were characterized physically (water absorption, thickness swelling, density) and mechanically in terms of modulus of elasticity (MOE), modulus of rupture (MOR), and internal bonding (IB) strength. The results demonstrated that fibers extracted with 2% NaOH provided the best overall performance. MANOVA combined with Tukey's test at a 95% confidence level showed statistically significant differences among the extraction methods but not between the bottom and middle fibers regardless of the method. The characterization of DM tannin showed its potential use in resin production. The performance of the composites manufactured was better than those made with the fibers extracted in the 2% NaOH solution, showing that GB fibers and DM tannin are promising local resources for the production of furniture panels working in a dry environment in compliance with the requirements of NF EN 312.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1177)

Pages:

43-54

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Ndiwe, B. Tibi, R. Danwe, N. Konai, A. Pizzi, et S. Amirou, « Reactivity, characterization and mechanical performance of particleboards bonded with tannin resins and bio hardeners from African trees », Int. Wood Prod. J., vol. 11, no 2, p.80‑93, 2020.

DOI: 10.1080/20426445.2020.1731070

Google Scholar

[2] F. B. Ebanda, « Etude des propriétés mécaniques et thermiques du plâtre renforcé de fibres végétales tropicales », PhD Thesis, Université Blaise Pascal-Clermont-Ferrand II, 2012.

Google Scholar

[3] B. Ndiwe, A. Pizzi, B. Tibi, R. Danwe, N. Konai, et S. Amirou, « African tree bark exudate extracts as biohardeners of fully biosourced thermoset tannin adhesives for wood panels », Ind. Crops Prod., vol. 132, p.253‑268, 2019.

DOI: 10.1016/j.indcrop.2019.02.023

Google Scholar

[4] Pizzi, A., Kueny, R., Lecoanet, F., Massetau, B., Carpentier, D., Krebs, A., ... & Ragoubi, M, « High resin content natural matrix–natural fibre biocomposites », Ind. Crops Prod., vol. 30, no 2, p.235‑240, 2009.

DOI: 10.1016/j.indcrop.2009.03.013

Google Scholar

[5] A. Pizzi, « Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues », J. Adhes. Sci. Technol., vol. 20, no 8, p.829‑846, 2006.

DOI: 10.1163/156856106777638635

Google Scholar

[6] H. H. Habibou, M. Idrissa, P. Ikhiri Khalid, et O. Benjamin, « Activité Antioxydante des Extraits Méthanoliques de Differents Organes de Detarium Microcarpum Guill. & Perr. », Eur. Sci. J., vol. 15, no 12, p.1857‑7881, 2019.

DOI: 10.19044/esj.2019.v15n12p159

Google Scholar

[7] Betené, A.D.O., Betené, F.E., Ngali, F.E., Noah, P.M.A., Ndiwé, B., Soppie, A.G., Atangana, A., Moukené, R., 2022. Influence of sampling area and extraction method on the thermal, physical and mechanical properties of Cameroonian Ananas comosus leaf fibers. Heliyon, vol. 8, no 8, 2022

DOI: 10.1016/j.heliyon.2022.e10127

Google Scholar

[8] Ndiwe, B., Konai, N., Omgba Betené, A.D., Pizzi, A., Gnassiri Wedaïna, A., Nzogning, F., Mewoli, A., Mbere Taoga, M., Tekam, D., Bayangbe Kikmo, H., others, 2023. Characterization of Grewia bicolor fibre and its use in the development of composites. Int. Wood Prod. J. 14, 74–86 », 2023.

DOI: 10.1080/20426445.2023.2223936

Google Scholar

[9] Youbi, S. B. T., Tagne, N. R. S., Harzallah, O., Huisken, P. W. M., Stanislas, T. T., Njeugna, E., ... & Bistac-Brogly, S.., « Effect of alkali and silane treatments on the surface energy and mechanical performances of Raphia vinifera fibres », Ind. Crops Prod., vol. 190, p.115854, déc. 2022

DOI: 10.1016/j.indcrop.2022.115854

Google Scholar

[10] N. Konai, D. Raidandi, A. Pizzi, P. Girods, M.-C. Lagel, et M. Kple, « Thermogravimetric analysis of anningre tannin resin », Maderas Cienc. Tecnol., vol. 18, no 2, p.245‑252, 2016.

DOI: 10.4067/s0718-221x2016005000022

Google Scholar

[11] L. Ping, A. Pizzi, Z. D. Guo, et N. Brosse, « Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive », Ind. Crops Prod., vol. 40, p.13‑20, 2012.

DOI: 10.1016/j.indcrop.2012.02.039

Google Scholar

[12] S. R. R. Marques, T. K. B. Azevêdo, A. R. F. de Castilho, R. M. Braga, et A. S. Pimenta, « Extraction, quantification, and FTIR characterization of bark tannins of four forest species grown in Northeast Brazil », Rev. Árvore, vol. 45, p. e4541, 2021.

DOI: 10.1590/1806-908820210000041

Google Scholar

[13] N. Konai, D. Raidandi, A. Pizzi, et L. Meva'a, « Characterization of Ficus sycomorus tannin using ATR-FT MIR, MALDI-TOF MS and 13C NMR methods », Eur. J. Wood Wood Prod., vol. 75, no 5, p.807‑815, sept. 2017.

DOI: 10.1007/s00107-017-1177-8

Google Scholar

[14] L. Chupin, « Etude de l'extraction de tanins d'écorce de pin maritime pour l'élaboration de colles tanin-lignosulfonate », PhD Thesis, Pau, 2014.

Google Scholar

[15] M. A. Pantoja-Castro et H. González-Rodríguez, « Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid », Rev. Latinoam. Quím., vol. 39, no 3, p.107‑112, 2011.

Google Scholar

[16] Wang, W., Wang, X., Ye, H., Hu, B., Zhou, L., Jabbar, S., ... & Shen, W.« Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L. », Int. J. Biol. Macromol., vol. 82, p.979‑988, 2016.

DOI: 10.1016/j.ijbiomac.2015.10.051

Google Scholar

[17] A. Pizzi, H. Pasch, K. Rode, et S. Giovando, « Polymer structure of commercial hydrolyzable tannins by matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry », J. Appl. Polym. Sci., vol. 113, no 6, p.3847‑3859, sept. 2009.

DOI: 10.1002/app.30377

Google Scholar

[18] G. Vázquez, J. González-Alvarez, J. Santos, M. S. Freire, et G. Antorrena, « Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts », Ind. Crops Prod., vol. 29, no 2‑3, p.364‑370, mars 2009.

DOI: 10.1016/j.indcrop.2008.07.004

Google Scholar

[19] H. Saad, A. Khoukh, N. Ayed, B. Charrier, et F. Charrier-El Bouhtoury, « Characterization of Tunisian Aleppo pine tannins for a potential use in wood adhesive formulation », Ind. Crops Prod., vol. 61, p.517‑525, 2014.

DOI: 10.1016/j.indcrop.2014.07.035

Google Scholar

[20] K. Charlet, C. Baley, C. Morvan, J. P. Jernot, M. Gomina, et J. Bréard, « Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites », Compos. Part Appl. Sci. Manuf., vol. 38, no 8, Art. no 8, août 2007.

DOI: 10.1016/j.compositesa.2007.03.006

Google Scholar

[21] Taoga, M.M., Ebanda, F.B., Pizzi, A., Ndiwe, B., Noah, P.M.A., Essome Mbang, J.P., Kibong Kimbi, K., Tabi Akwo, E., Segovia, C., Influence of the Sampling Area on the Chemical, Physical, and Mechanical Properties of Grewia bicolor (GB) Fiber for Potential Use in the Reinforcement of Tannin Matrix Composites. J. Nat. Fibers 21, 2346121, (2024)

DOI: 10.1080/15440478.2024.2346121

Google Scholar

[22] B. Ndiwe, A. Pizzi, B. Tibi, R. Danwe, N. Konai, et S. Amirou, « African tree bark exudate extracts as biohardeners of fully biosourced thermoset tannin adhesives for wood panels », Ind Crops Prod, vol. 132, 2019.

DOI: 10.1016/j.indcrop.2019.02.023

Google Scholar

[23] B. Ndiwe, A. Pizzi, R. Danwe, B. Tibi, N. Konai, et S. Amirou, « Panneaux de particules collés avec des bio­durcisseurs de colles au tanin ».

Google Scholar

[24] Ullah, Arshad, and Majid Ali. "A Review on Improving the Design and Performance of Rigid Pavements with Fiber Concrete." Construction Technologies and Architecture 15 (2025): 143-150.

DOI: 10.4028/p-bx63c1

Google Scholar