Exploring the Impact of Pressing Techniques on Mycelium-Based Biocomposites

Article Preview

Abstract:

Mycelium-based composite (MBC), as a new engineering biocomposite, is receiving numerous interests due to its environmental sustainability. The study aimed to address the challenge of optimizing the physical properties of MBC for a more efficient production process. The study investigated the impact of hot or cold pressing, different pressing temperatures (120 °C, 160 °C, and 200 °C), pressing pressures (low, medium and high) and sequences (before and after drying process) on the physical properties of MBC such as density, shrinkage, moisture content and hardness. Mycelium millets were mixed with kenaf, carbon carbonate, wheat bran and wheat flour. The pressing methods and sequences significantly affected the properties of the MBC. Cold pressing had no effect on reducing shrinkage and moisture content of MBC but improved density. Hot pressing increased hardness at higher temperature and pressure, with strong mycelium-substrate bonding and less porosity observed in SEM image. The post processing sequence involving drying followed by hot pressing at 200°C exhibited higher density, hardness, less shrinkage and controllable moisture content of MBC for better dimensional stability and quality control purpose. It was crucial to optimize MBC pressing techniques for specific applications and ensure that it satisfied the demanding standards of companies looking for sustainable alternatives and cost-effective production.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1177)

Pages:

75-84

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Jefferson Andrew, H.N. Dhakal, Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review, Composites Part C: Open Access. 7 (2022) 1-32.

DOI: 10.1016/j.jcomc.2021.100220

Google Scholar

[2] T. Zhiltsova, J. Campos, A. Costa, M.S.A. Oliveira, Sustainable polypropylene-based composites with agro-waste fillers: thermal, morphological, mechanical properties and dimensional stability, Materials. 17, 696 (2024) 1-17.

DOI: 10.3390/ma17030696

Google Scholar

[3] S. Kumar, N. Gariya, A. Shaikh, F. Ahmad, A. Yadav, Physico-mechanical and thermal properties of fly ash and benzoylated Himalayan Agave fiber reinforced polyester composite, Biomass Convers. Biorefinery. (2024) 1-14.

DOI: 10.1007/s13399-024-05518-0

Google Scholar

[4] K.I. Ismail, R. Pang, R. Ahmed, T.C. Yap, Tensile properties of in situ 3d printed glass fiber-reinforced PLA, Polymers. 15 (2023) 1-17.

DOI: 10.3390/polym15163436

Google Scholar

[5] R.M. Escaleira, M.J. Campos, M.L. Alves, Mycelium-based composites: A new approach to sustainable materials, in: H. Rodrigues, F. Gaspar, P. Fernandes, A. Mateus, (Eds.) Sustainability and Automation in Smart Constructions, Advances in Science, Technology & Innovation, Springer, Switzerland AG, 2021, pp.261-266.

DOI: 10.1007/978-3-030-35533-3_30

Google Scholar

[6] A. Baysal, P. Yayla, H.S. Türkmen, A review on engineering biocomposites and natural fiber-reinforced materials, J. Sustain. Constr. Mater. Technol. 7, 3 (2022) 231-249.

DOI: 10.47481/jscmt.1182641

Google Scholar

[7] W. Aiduang, K. Jatuwong, P. Jinanukul, N. Suwannarach, J. Kumla, W. Thamjaree, T. Teeraphantuvat, T. Waroonkun, R. Oranratmanee, S. Lumyong, Sustainable innovation: fabrication and characterization of mycelium-based green composites for modern interior materials using agro-industrial wastes and different species of fungi, Polymers. 16, 550 (2024) 1-25.

DOI: 10.3390/polym16040550

Google Scholar

[8] D. Alemu, M. Gemeda, A. Mondal, Mycelium-based composite: the future sustainable biomaterial, Int. J. Biomater. 2022 (2022) 1-12.

Google Scholar

[9] C. Madusanka, D. Udayanga, R. Nilmini, S. Rajapaksha, C. Hewawasam, D. Manamgoda, J. Vasco-Correa, A review of recent advances in fungal mycelium based composites, Discov. Mater. 4, 13 (2024) 1-19.

DOI: 10.1007/s43939-024-00084-8

Google Scholar

[10] K.A. Schoder, J. Krümpel, J. Müller, A. Lemmer, Effects of environmental and nutritional conditions on mycelium growth of three Basidiomycota, Mycobiology. 52, 2 (2024) 124–134.

DOI: 10.1080/12298093.2024.2341492

Google Scholar

[11] H. Vašatko, L. Gosch, J. Jauk, M. Stavric, Basic research of material properties of mycelium-based composites, Biomimetics. 7, 51 (2022) 1-16.

DOI: 10.3390/biomimetics7020051

Google Scholar

[12] M. Jones, A. Mautner, S. Luenco, A. Bismarck, S. John, Engineered mycelium composite construction materials from fungal biorefineries: a critical review, Mater. Des. 187 (2020) 1-15.

DOI: 10.1016/j.matdes.2019.108397

Google Scholar

[13] F.V.W. Appels, S. Camere, M. Montalti, E. Karana, K.M.B. Jansen, J. Dijksterhuis, P. Krijgsheld, H.A.B. Wosten, Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites, Mater. Des. 161 (2019) 64–71.

DOI: 10.1016/j.matdes.2018.11.027

Google Scholar

[14] R. Ibrahim, N.F.U Shaharudin, Comparison of sawdust and kenaf core fibre as cultivation substrates for grey oyster (Pleurotus sajor-caju) and black jelly (Auricularia auricular-judae) mushrooms, IOP Conf. Ser.: Earth Environ. Sci. 765 (2021) 1-11.

DOI: 10.1088/1755-1315/765/1/012005

Google Scholar

[15] M. Nussbaumer, D.V. Opdenbosch, M. Engelhardt, H. Briesen, J.P. Benz, T. Karl, Material characterization of pressed and unpressed wood–mycelium composites derived from two Trametes species, Environ. Technol. Innov. 30 (2023) 1-11.

DOI: 10.1016/j.eti.2023.103063

Google Scholar

[16] S. Manan, M.W. Ullah, M. Ul-Islam, O. M. Atta, G. Yang, Synthesis and applications of fungal mycelium-based advanced functional materials, J. Bioresour. Bioprod. 6, 1 (2021) 1-10.

DOI: 10.1016/j.jobab.2021.01.001

Google Scholar

[17] D.G. Barta, I. Simion, A. E. Tiuc, O. Vasile, Mycelium-based composites as a sustainable solution for waste management and circular economy, Materials. 17, 404 (2024) 1-16.

DOI: 10.3390/ma17020404

Google Scholar

[18] E. Elsacker, S. Vandelook, J. Brancart, E. Peeters, L.D. Laet, Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates, PLoS ONE. 14, 7 (2019) 1-23.

DOI: 10.1371/journal.pone.0213954

Google Scholar

[19] N. Attias, O. Danai, T. Abitbol, E. Tarazi, N. Ezov, I. Pereman, Y. J. Grobman, Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis, J. Clean. Prod. 246, 119037 (2020) 1-17.

DOI: 10.1016/j.jclepro.2019.119037

Google Scholar

[20] W. Aiduang, J. Kumla, S. Srinuanpan, W. Thamjaree, S. Lumyong, N. Suwannarach, Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species, J. Fungi. 8, 1125 (2022) 1-21.

DOI: 10.3390/jof8111125

Google Scholar

[21] R. Liu, L. Long, Y. Sheng, X. Jianfeng, Q. Hongyun, L. Xiaoyan, W. Yanxia, W. Huagui, Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties, Ind. Crop. Prod. 141, 111732 (2019) 1-6.

DOI: 10.1016/j.indcrop.2019.111732

Google Scholar

[22] K.K. Alaneme, J.U. Anaele, T.M. Oke, S.A. Kareem, M. Adediran, O.A. Ajibuwa, Y.O. Anabaranze, Mycelium based composites: a review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 83, (2023) 234-250.

DOI: 10.1016/j.aej.2023.10.012

Google Scholar

[23] G.G. De Lima, Z.C.P. Schoenherr, W.L.E. Magalhães, L.B.B. Tavares, C.V. Helm, Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes, Bioresour. Bioprocess. 7, 58 (2020) 1-17.

DOI: 10.21203/rs.3.rs-50750/v2

Google Scholar

[24] L. Peng, J. Yi, X. Yang, J. Xie, C. Chen, Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts, J. Bioresour. Bioprod. 8, 1 (2023) 78-89.

DOI: 10.1016/j.jobab.2022.11.005

Google Scholar