[1]
Villagrán-Zaccardi, Y.A., Marsh, A.T., Sosa, M.E., Zega, C.J., De Belie, N. and Bernal, S.A., 2022. Complete re-utilization of waste concretes–Valorisation pathways and research needs. Resources, Conservation and Recycling, 177, p.105955.
DOI: 10.1016/j.resconrec.2021.105955
Google Scholar
[2]
Alengaram, U.J., 2022. Valorization of industrial byproducts and wastes as sustainable construction materials. In Handbook of Sustainable Concrete and Industrial Waste Management (pp.23-43). Woodhead Publishing.
DOI: 10.1016/b978-0-12-821730-6.00003-6
Google Scholar
[3]
Ford, S. and Despeisse, M., 2016. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of cleaner Production, 137, pp.1573-1587.
DOI: 10.1016/j.jclepro.2016.04.150
Google Scholar
[4]
Soutsos, M.N., Tang, K. and Millard, S.G., 2011. Concrete building blocks made with recycled demolition aggregate. Construction and Building Materials, 25(2), pp.726-735.
DOI: 10.1016/j.conbuildmat.2010.07.014
Google Scholar
[5]
de Castrillo, M.C., Ioannou, I. and Philokyprou, M., 2021. Reproduction of traditional adobes using varying percentage contents of straw and sawdust. Construction and Building Materials, 294, p.123516.
DOI: 10.1016/j.conbuildmat.2021.123516
Google Scholar
[6]
Pambou Nziengui, C.F., Ikogou, S. and Moutou Pitti, R., 2018. Impact of cyclic compressive loading and moisture content on the mechanical behavior of Aucoumea Klaineana Pierre. Wood Material Science & Engineering, 13(4), pp.190-196.
DOI: 10.1080/17480272.2017.1307281
Google Scholar
[7]
PSGE, (2008). Plan Strategique Gabon Emergent : Vision 2025 et orientations stratégiques 2011-2016, p.149
Google Scholar
[8]
Gooch, Lewis J., Mark J. Masia, Mark G. Stewart, Chee Yin Lam, Statistical assessment of tensile and shear properties of unreinforced clay brick masonry, Construction and Building Materials, Volume 386, 2023.
DOI: 10.1016/j.conbuildmat.2023.131578
Google Scholar
[9]
Frumento, S., Magenes, G., Morandi, P. and Calvi, G.M., 2009. Interpretation of experimental shear tests on clay brick masonry walls and evaluation of q-factors for seismic design. Pavia: Iuss Press.
Google Scholar
[10]
Hassan, A.M.S., Abdeen, A., Mohamed, A.S. and Elboshy, B., 2022. Thermal performance analysis of clay brick mixed with sludge and agriculture waste. Construction and Building Materials, 344, p.128267.
DOI: 10.1016/j.conbuildmat.2022.128267
Google Scholar
[11]
Sarani, N.A., Kadir, A.A., Din, M.F.M., Hashim, A.A., Hassan, M.I.H., Hamid, N.J.A., Hashar, N.N.H., Hissham, N.F.N. and Johan, S.F.S., 2023. Physical-mechanical properties and thermogravimetric analysis of fired clay brick incorporating palm kernel shell for alternative raw materials. Construction and Building Materials, 376, p.131032.
DOI: 10.1016/j.conbuildmat.2023.131032
Google Scholar
[12]
Liu, H., Li, Q. and Wang, P., 2023. Assessment of the engineering properties and economic advantage of recycled aggregate concrete developed from waste clay bricks and coconut shells. Journal of Building Engineering, 68, p.106071.
DOI: 10.1016/j.jobe.2023.106071
Google Scholar
[13]
Berra, M., Fabbri, F., Facoetti, M., Noris, A., Pezzuoli, M., Ricciardulli, R., Romano, G. and Tarquini, B., 1988. Behaviour of a cementing hydraulic binder under severe geothermal conditions. Geothermics, 17(5-6), pp.785-813.
DOI: 10.1016/0375-6505(88)90038-7
Google Scholar
[14]
Paul, A. and John, E., 2023. Study on the optimisation of cement and binder content to develop a sustainable high-performance concrete. Materials Today: Proceedings.
DOI: 10.1016/j.matpr.2023.12.012
Google Scholar
[15]
Zhai, Y., Wang, T., Zhu, Y., Peng, C., Wang, B., Li, X., Li, C. and Zeng, G., 2018. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Waste management, 77, pp.185-194.
DOI: 10.1016/j.wasman.2018.05.022
Google Scholar
[16]
Nganko, J.M., Koffi, E.P.M., Gbaha, P., Toure, A.O., Kane, M., Ndiaye, B., Faye, M., Nkounga, W.M., Tekounegning, C.T., Bile, E.E.J. and Yao, K.B., 2024. Modeling and optimization of compaction
DOI: 10.1016/j.heliyon.2024.e25376
Google Scholar
[17]
Harel X & Hofnung T. (2011). - Le scandale des biens mal acquis. Enquête sur les milliards volés de la Françafrique. La découverte ed. 238 pp.
DOI: 10.3917/pe.121.0192j
Google Scholar
[18]
Boulingui J.E., Nkoumbou C., Njoya D., Thomas F., Yvon J. (2015). Characterization of clays from ezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products. Applied Clays Science, 115, 132-144.
DOI: 10.1016/j.clay.2015.07.029
Google Scholar
[19]
Boulingui J.E. (2015). Inventaire des ressources en argiles du Gabon et leurs utilisations conventionnelles ou non dans les régions de Libreville et Tchibanga. Thèse de Doctorat.
Google Scholar
[20]
Pomerol C., Lagabrielle Y., Renard M., Guillot S. (2011). Eléments de Géologie Paris Dunod. 14è édition. ISBN 978-2-10-055943-5. pp.53-54.
Google Scholar
[21]
Engonga Edzang, A.C.S., Pambou Nziengui, C.F., Ekomy Ango, S., Ikogou, S. and Moutou Pitti, R., 2021. Comparative studies of three tropical wood species under compressive cyclic loading and moisture content changes. Wood Material Science & Engineering, 16(3), pp.196-203.
DOI: 10.1080/17480272.2020.1712739
Google Scholar
[22]
Ndong Bidzo, C.H., Pambou Nziengui, C.F., Ikogou, S., Kaiser, B. and Moutou Pitti, R., 2022. Mechanical properties of Glued-laminated timber made up of mixed tropical wood species. Wood Material Science & Engineering, 17(6), pp.809-822.
DOI: 10.1080/17480272.2021.1960422
Google Scholar
[23]
ATIBT (2024) https://www.timbertradeportal.com/fr/gabon/6/industrie-du-bois.
Google Scholar
[24]
CIRAD (2012a) https: // tropix.cirad.fr / FichiersComplementaires / FR / Afrique / PADOUK.pdf. Accessed 13 December (2023)
Google Scholar
[25]
CIRAD (2012b) https: // tropix.cirad.fr / FichiersComplementaires / FR / Afrique / OZIGO.pdf. Accessed 13 December (2023)
Google Scholar
[26]
CIRAD (2012c) https://tropix.cirad.fr/FichiersComplementaires/FR/Afrique/ANDOUNG.pdf. Accessed 13 December (2023)
Google Scholar
[27]
Saboo, N., Sukhija, M., Mehta, D., Haswanth, K., Srivastava, A. and Patil, A., 2023. Use of raw sugarcane molasses as a partial replacement of asphalt binder: An experimental investigation. Construction and Building Materials, 369, p.130541.
DOI: 10.1016/j.conbuildmat.2023.130541
Google Scholar
[28]
Şahinöz, M., Aruntaş, H.Y. and Gürü, M., 2022. Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. Case Studies in Construction Materials, 16, p.e01013
DOI: 10.1016/j.cscm.2022.e01013
Google Scholar
[29]
Toussakoe, K., Ouedraogo, E., Imbga, K. B., Messan, A., Kieno, F. P., (2021).- Caractérisation mécanique et thermo-physique de l'adobe utilisé dans la voûte nubienne, Burkina-faso. Afrique Science, 19(5), 186 – 199.
Google Scholar
[30]
Anant .L., Murmu, and Patel, A., 2018. Towards sustainable bricks production: An overview. Construction and building materials, 165, pp.112-125.
DOI: 10.1016/j.conbuildmat.2018.01.038
Google Scholar
[31]
Illampas, R., Ioannou, I. and Charmpis, D.C., 2014. Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Construction and Building Materials, 53, pp.83-90.
DOI: 10.1016/j.conbuildmat.2013.11.103
Google Scholar
[32]
Hussain, A., Calabria-Holley, J., Lawrence, M. and Jiang, Y., 2019. Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Construction and Building Materials, 212, pp.561-568.
DOI: 10.1016/j.conbuildmat.2019.04.029
Google Scholar