Highlighting of Design and Mechanical Behavior of Adobe Clay Bricks Made with Biomass Waste

Article Preview

Abstract:

This work focuses on the design and the study of mechanical behavior of new adobe clay bricks material made from local ecological materials for use in construction. The hydraulic binder used is a clay mineral material from the Sibang district in Gabon, and the biomass consists of sawdust from tropical wood species (okoume) combined with additives such as sugar cane molasses and cassava starch. The sawdust comes from okoume, where the selected protocol is based on their availability and widespread use locally. Preleminary tests done on clay show detailed analyses using laser granulometry, chemical analysis of major elements in total rock, X-ray diffraction on total rock and oriented samples (normal and heated to 550°C and ethylene glycol), infrared spectroscopy, cation exchange capacities, and scanning electron microscopy. The mixture of sawdust from okoume, padouk, azobe specie and 85% Sibang clay allowed for the design of bricks with quality facades. The respective compression strength tests resulted in 6.44 MPa, 3.15 MPa and 3.13 MPa, where the mixture containing the okoume sawdust showed a resistance, of 6.44 MPa, two times higher than the others. The adobe bricks incorporating sawdust from okoume, padouk and azobe woods are in compliance with the French standard for compressed earth blocks. The sawdust-wood mixture combined with clay is an ecological material and an alternative to the use of traditional concrete blocks in Gabon.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1177)

Pages:

119-133

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Villagrán-Zaccardi, Y.A., Marsh, A.T., Sosa, M.E., Zega, C.J., De Belie, N. and Bernal, S.A., 2022. Complete re-utilization of waste concretes–Valorisation pathways and research needs. Resources, Conservation and Recycling, 177, p.105955.

DOI: 10.1016/j.resconrec.2021.105955

Google Scholar

[2] Alengaram, U.J., 2022. Valorization of industrial byproducts and wastes as sustainable construction materials. In Handbook of Sustainable Concrete and Industrial Waste Management (pp.23-43). Woodhead Publishing.

DOI: 10.1016/b978-0-12-821730-6.00003-6

Google Scholar

[3] Ford, S. and Despeisse, M., 2016. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of cleaner Production, 137, pp.1573-1587.

DOI: 10.1016/j.jclepro.2016.04.150

Google Scholar

[4] Soutsos, M.N., Tang, K. and Millard, S.G., 2011. Concrete building blocks made with recycled demolition aggregate. Construction and Building Materials, 25(2), pp.726-735.

DOI: 10.1016/j.conbuildmat.2010.07.014

Google Scholar

[5] de Castrillo, M.C., Ioannou, I. and Philokyprou, M., 2021. Reproduction of traditional adobes using varying percentage contents of straw and sawdust. Construction and Building Materials, 294, p.123516.

DOI: 10.1016/j.conbuildmat.2021.123516

Google Scholar

[6] Pambou Nziengui, C.F., Ikogou, S. and Moutou Pitti, R., 2018. Impact of cyclic compressive loading and moisture content on the mechanical behavior of Aucoumea Klaineana Pierre. Wood Material Science & Engineering, 13(4), pp.190-196.

DOI: 10.1080/17480272.2017.1307281

Google Scholar

[7] PSGE, (2008). Plan Strategique Gabon Emergent : Vision 2025 et orientations stratégiques 2011-2016, p.149

Google Scholar

[8] Gooch, Lewis J., Mark J. Masia, Mark G. Stewart, Chee Yin Lam, Statistical assessment of tensile and shear properties of unreinforced clay brick masonry, Construction and Building Materials, Volume 386, 2023.

DOI: 10.1016/j.conbuildmat.2023.131578

Google Scholar

[9] Frumento, S., Magenes, G., Morandi, P. and Calvi, G.M., 2009. Interpretation of experimental shear tests on clay brick masonry walls and evaluation of q-factors for seismic design. Pavia: Iuss Press.

Google Scholar

[10] Hassan, A.M.S., Abdeen, A., Mohamed, A.S. and Elboshy, B., 2022. Thermal performance analysis of clay brick mixed with sludge and agriculture waste. Construction and Building Materials, 344, p.128267.

DOI: 10.1016/j.conbuildmat.2022.128267

Google Scholar

[11] Sarani, N.A., Kadir, A.A., Din, M.F.M., Hashim, A.A., Hassan, M.I.H., Hamid, N.J.A., Hashar, N.N.H., Hissham, N.F.N. and Johan, S.F.S., 2023. Physical-mechanical properties and thermogravimetric analysis of fired clay brick incorporating palm kernel shell for alternative raw materials. Construction and Building Materials, 376, p.131032.

DOI: 10.1016/j.conbuildmat.2023.131032

Google Scholar

[12] Liu, H., Li, Q. and Wang, P., 2023. Assessment of the engineering properties and economic advantage of recycled aggregate concrete developed from waste clay bricks and coconut shells. Journal of Building Engineering, 68, p.106071.

DOI: 10.1016/j.jobe.2023.106071

Google Scholar

[13] Berra, M., Fabbri, F., Facoetti, M., Noris, A., Pezzuoli, M., Ricciardulli, R., Romano, G. and Tarquini, B., 1988. Behaviour of a cementing hydraulic binder under severe geothermal conditions. Geothermics, 17(5-6), pp.785-813.

DOI: 10.1016/0375-6505(88)90038-7

Google Scholar

[14] Paul, A. and John, E., 2023. Study on the optimisation of cement and binder content to develop a sustainable high-performance concrete. Materials Today: Proceedings.

DOI: 10.1016/j.matpr.2023.12.012

Google Scholar

[15] Zhai, Y., Wang, T., Zhu, Y., Peng, C., Wang, B., Li, X., Li, C. and Zeng, G., 2018. Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. Waste management, 77, pp.185-194.

DOI: 10.1016/j.wasman.2018.05.022

Google Scholar

[16] Nganko, J.M., Koffi, E.P.M., Gbaha, P., Toure, A.O., Kane, M., Ndiaye, B., Faye, M., Nkounga, W.M., Tekounegning, C.T., Bile, E.E.J. and Yao, K.B., 2024. Modeling and optimization of compaction

DOI: 10.1016/j.heliyon.2024.e25376

Google Scholar

[17] Harel X & Hofnung T. (2011). - Le scandale des biens mal acquis. Enquête sur les milliards volés de la Françafrique. La découverte ed. 238 pp.

DOI: 10.3917/pe.121.0192j

Google Scholar

[18] Boulingui J.E., Nkoumbou C., Njoya D., Thomas F., Yvon J. (2015). Characterization of clays from ezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products. Applied Clays Science, 115, 132-144.

DOI: 10.1016/j.clay.2015.07.029

Google Scholar

[19] Boulingui J.E. (2015). Inventaire des ressources en argiles du Gabon et leurs utilisations conventionnelles ou non dans les régions de Libreville et Tchibanga. Thèse de Doctorat.

Google Scholar

[20] Pomerol C., Lagabrielle Y., Renard M., Guillot S. (2011). Eléments de Géologie Paris Dunod. 14è édition. ISBN 978-2-10-055943-5. pp.53-54.

Google Scholar

[21] Engonga Edzang, A.C.S., Pambou Nziengui, C.F., Ekomy Ango, S., Ikogou, S. and Moutou Pitti, R., 2021. Comparative studies of three tropical wood species under compressive cyclic loading and moisture content changes. Wood Material Science & Engineering, 16(3), pp.196-203.

DOI: 10.1080/17480272.2020.1712739

Google Scholar

[22] Ndong Bidzo, C.H., Pambou Nziengui, C.F., Ikogou, S., Kaiser, B. and Moutou Pitti, R., 2022. Mechanical properties of Glued-laminated timber made up of mixed tropical wood species. Wood Material Science & Engineering, 17(6), pp.809-822.

DOI: 10.1080/17480272.2021.1960422

Google Scholar

[23] ATIBT (2024) https://www.timbertradeportal.com/fr/gabon/6/industrie-du-bois.

Google Scholar

[24] CIRAD (2012a) https: // tropix.cirad.fr / FichiersComplementaires / FR / Afrique / PADOUK.pdf. Accessed 13 December (2023)

Google Scholar

[25] CIRAD (2012b) https: // tropix.cirad.fr / FichiersComplementaires / FR / Afrique / OZIGO.pdf. Accessed 13 December (2023)

Google Scholar

[26] CIRAD (2012c) https://tropix.cirad.fr/FichiersComplementaires/FR/Afrique/ANDOUNG.pdf. Accessed 13 December (2023)

Google Scholar

[27] Saboo, N., Sukhija, M., Mehta, D., Haswanth, K., Srivastava, A. and Patil, A., 2023. Use of raw sugarcane molasses as a partial replacement of asphalt binder: An experimental investigation. Construction and Building Materials, 369, p.130541.

DOI: 10.1016/j.conbuildmat.2023.130541

Google Scholar

[28] Şahinöz, M., Aruntaş, H.Y. and Gürü, M., 2022. Processing of polymer wood composite material from pine cone and the binder of phenol formaldehyde/PVAc/molasses and improvement of its properties. Case Studies in Construction Materials, 16, p.e01013

DOI: 10.1016/j.cscm.2022.e01013

Google Scholar

[29] Toussakoe, K., Ouedraogo, E., Imbga, K. B., Messan, A., Kieno, F. P., (2021).- Caractérisation mécanique et thermo-physique de l'adobe utilisé dans la voûte nubienne, Burkina-faso. Afrique Science, 19(5), 186 – 199.

Google Scholar

[30] Anant .L., Murmu, and Patel, A., 2018. Towards sustainable bricks production: An overview. Construction and building materials, 165, pp.112-125.

DOI: 10.1016/j.conbuildmat.2018.01.038

Google Scholar

[31] Illampas, R., Ioannou, I. and Charmpis, D.C., 2014. Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation. Construction and Building Materials, 53, pp.83-90.

DOI: 10.1016/j.conbuildmat.2013.11.103

Google Scholar

[32] Hussain, A., Calabria-Holley, J., Lawrence, M. and Jiang, Y., 2019. Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Construction and Building Materials, 212, pp.561-568.

DOI: 10.1016/j.conbuildmat.2019.04.029

Google Scholar