Towards SiGe Terahertz VCSELs

Article Preview

Abstract:

Asymmetric rolling, in which the circumferential velocities of the upper and lower rolls are different, can give rise to intense plastic shear strains and in turn shear deformation textures through the sheet thickness. The ideal shear deformation texture of fcc metals can be approximated by the <111> // ND and {001}<110> orientations, among which the former improves the deep drawability. The ideal shear deformation texture for bcc metals can be approximated by the Goss {110}<001> and {112}<111> orientations, among which the former improves the magnetic permeability along the <100> directions and is the prime orientation in grain oriented silicon steels. The intense shear strains can result in the grain refinement and hence improve echanical properties. Steel sheets, especially ferritic stainless steel sheets, and luminum alloy sheets may exhibit an undesirable surface roughening known as ridging or roping, when elongated along RD and TD, respectively. The ridging or roping is caused by differently oriented colonies, which are resulted from the <100> oriented columnar structure in ingots or billets, especially for ferritic stainless steels, that is not easily destroyed by the conventional rolling. The breakdown of columnar structure and the grain refinement can be achieved by asymmetric rolling, resulting in a decrease in the ridging problem.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 453-454)

Pages:

1-8

Citation:

Online since:

May 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Friedman, R. A. Soref, G. Sun, and Y. Lu, IEEE J. Select. Topics Quantum Electron. 4, 1029 (1998).

Google Scholar

[2] G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grutzmacher, and E. Muller, Science 290, 2277 (2000).

DOI: 10.1126/science.290.5500.2277

Google Scholar

[3] S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonic, R. W. Kelsall, P. Harrison, D. D. Arnone, and C. R. Pidgeon, Appl. Phys. Lett. 81, 1543 (2002).

DOI: 10.1063/1.1501759

Google Scholar

[4] R. Kohler, A. Tredicucci, F. Beltram, H. E. Beer, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, Nature 417, 156 (2002).

DOI: 10.1038/417156a

Google Scholar

[5] Z. Ikonic, P. Harrison, and R. W. Kelsall, Phys. Rev. B 64, Art. No. 245311 (2001).

Google Scholar

[6] Z. Ikonic, R. W. Kelsall, P. Harrison, Phys. Rev. B 64, Art. No. 125308 (2001).

Google Scholar

[7] J. M. Hinckley, and J. Singh, J. Appl. Phys. 76, 4192 (1994).

Google Scholar

[8] K. Yeom, J. M. Hinckley, and J. Singh, J. Appl. Phys. 80, 6773 (1996).

Google Scholar

[9] Z. Ikonic, P. Harrison, and R. W. Kelsall, J. Comput. Electron. 1, 191 (2002).

Google Scholar

[10] R. C. Iotti, and F. Rossi, Phys. Rev. Lett. 87, Art. No. 146603 (2001).

Google Scholar

[11] P. Harrison, D. Indjin, and R. W. Kelsall, J. Appl. Phys. 92, 6921 (2002).

Google Scholar

[12] P. Murzyn, C. R. Pidgeon, J. -P. R. Wells, I. V. Bradley, Z. Ikonic, R. W. Kelsall, P. Harrison, S. A. Lynch, D. J. Paul, D. D. Arnone, D. J. Robbins, D. J. Norris, A. G. Cullis, Appl. Phys. Lett. 80, 1456 (2002).

DOI: 10.1063/1.1452794

Google Scholar