Orientation Aspects of the Recrystallization Nucleation in Highly Deformed Polycrystalline Copper

Article Preview

Abstract:

The orientation dependence of recrystallization nucleation in 95% cold-rolled polycrystalline copper was studied by means of electron microscopy and calorimetry. Local orientation characteristics of microstructure at the beginning of recrystallization process were analyzed. Combined calorimetric and microscopic investigations, including local orientations measurements, imply that recrystallization is a superposition of several local processes that develop in two steps. In the first step, discussed in this paper, recrystallization process develops in the areas of localized strain, including shear bands and regions of more or less distorted matrix subgrains. Orientations of nuclei reproduce all components of deformation texture. Further growth of nuclei is accompanied by selective generation of successive recrystallization twins. In fact, not single grains are growing, but entire colonies comprising the nuclei developed from fragments of deformed matrix and recrystallization twins [e. g. 1].

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

99-106

Citation:

Online since:

October 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Sztwiertnia: Mechanizmy Formownia się Tekstur Rekrystalizacji w Metalach i Stopach o Sieci RSC (Polska Akademia Nauk, Instytut Metalurgii i Inżynierii Materiałowej, ISBN 83-915145- 2-8, Krakow 2001).

Google Scholar

[2] A.A. Ridha and W. B. Hutchinson: Acta Metall. Mater., Vol. 30 (1982) p. (1929).

Google Scholar

[3] K. Sztwiertnia and F. Haessner: Proc. of 16 th Risø International Symposium on Materials Science: Microstructural and Crystallographic Aspects of Recrystallization, ed. by N. Hansen, D. Juul Jensen, Y. L. Liu and B. Ralph, Denmark 1995, p.565.

Google Scholar

[4] J. Pospiech and K. Lücke: Acta Metall. Mater., 26 (1978), p.1709.

Google Scholar

[5] E. Woldt and D. Juul Jensen: Metall. Mater. Trans. A, Vol. 26A, No. 7 (1995), p.1717.

Google Scholar

[6] R.A. Vandermeer and D. Juul Jensen: Metall. Mater. Trans. A, Vol. 26A, No. 9 (1995), p.2227.

Google Scholar

[7] K. Morii, H. Mecking and Y. Nakayama: Trans. Japan Inst. Metals., Vol. 18 (1977), p.7.

Google Scholar

[8] K. Sztwiertnia and F. Haessner: Mater. Sci. Forum, Vol. 157-162 (1994), p.1291.

Google Scholar

[9] H. Paul: Archives of Metall., Vol. 47 (2002), p.205.

Google Scholar

[10] F. Haessner and K. Sztwiertnia: Scripta Metall. Mater., Vol. 27 (1992), p.1545.

Google Scholar

[11] K. Sztwiertnia and F. Haessner: Textures and Microstructures, Vol. 14-18 (1991), p.641.

Google Scholar

[12] B. Bay and N. Hansen: Metall. Trans., 104 (1979), p.279.

Google Scholar

[13] R.D. Doherty and J. Szpunar: Acta Metall., 32 (1984), p.1789.

Google Scholar

[14] H. Hu: Recovery and Recrystallization of Metals (J. Wiley and Sons, New York 1963). 1 Three relations are possible between different SSVs of S-orientation: ~380<111>, ~390<221>, ~500<332>; and one between Copper- and Brass-orientation: ~600 <111>.

Google Scholar