Synthesis and Magnetic Properties of FeCo Alloy Nanoparticles by Hydrogen Plasma Metal Reaction

Article Preview

Abstract:

Fe61Co39 nanoparticles were prepared by hydrogen plasma metal reaction. The as-synthesized nanoparticles were characterized by x-ray differaction (XRD), transimition electron microscope (TEM) and superconducting quantum interference device (SQUID). The nanoparticles are spherical in shape, have bcc structure with the mean particle diameter of 41 nm, and are basically ferromagnetic with a slight amount of superparamagnetic part. The saturation magnetization and coercivity of the nanoparticles at 4.2 K are 190.15 emu/g and 1280 Oe, respectively. The blocking temperature is 250 K in 100 Oe and decreases with increasing the magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

2215-2218

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Dorman, D. Fiorani: Magnetic Properties of Fine Particles, North-Holland, Amsterdam, (1992).

Google Scholar

[2] Nelli S. Sobal, M. Hilgendorff et al: Nano Letters Vol. 2 (2002), p.621.

Google Scholar

[3] Y.B. Pithawalla, M.S. Fl-Shall, S.C. Deevi, V. Strom and K.V. Rao: J. Phys. Chem. B Vol. 105 (2001), p. (2085).

Google Scholar

[4] L.L.P. Diandra and D.R. Rieben: Chem. Mater. Vol. 8 (1996), p.1770.

Google Scholar

[5] X.G. Li, S. Takahashi, K. Watanabe, Y. Kikuchi and M. Koishi: Nano Letters Vol. 1 (2001), p.475.

Google Scholar

[6] M. Uda: Yousetu-Gakkai-Shi Vol 54 (1985), p.318.

Google Scholar

[7] X.G. Li, T. Murai, A. Chiba and S. Takahashi: J. Appl. Phy. Vol. 86 (1999), p.1867.

Google Scholar

[8] T. Liu, Y.H. Leng and X.G. Li: Solid State Communications Vol. 125 (2003), p.391.

Google Scholar

[9] M. Konuma: Magnetic Materials, Kogakutosyo Ltd., Tokyo, (1998).

Google Scholar

[10] R.M. Bozorth, Ferromagnetism, D. Van Nostrand, New York, 1951, p.441.

Google Scholar

[11] X. G. Li, A. Chiba, S. Takahashi: J. Magn. Magn. Mater. Vol. 170 (1997), p.209.

Google Scholar

[12] S. Gangopadhyay, G.C. hadjipanayis, S.I. Shah, C.M. Sorensen, K.J. Klabunde, V. Papefthymiou, A. Kositikas: Phys. Rev. B Vol. 45 (1992), p.9778.

Google Scholar

[13] A.H. Morrish, K. Haneda, P.J. Schurer: J. Phys. (Paris) Colloq. Vol. 37 (1967), p. C6-301.

Google Scholar

[14] X.L. Dong: J. Magn. & Magn. Mater. Vol. 210 (2000), p.143.

Google Scholar

[15] S. Gangopadhyay, G.C. hadjipanayis, S.I. Shah, C.M. Sorensen, K.J. Klabunde, V. Papefthymiou, A. Kositikas: J. Appl. Phys. Vol. 70 (1991), p.5888.

Google Scholar

[16] T. Tanaka, N. Tamagawa: Jpn. J. Appl. Phys. Vol. 6 (1967), p.1096.

Google Scholar

[17] A. Tasaki, M. Oda, S. Kashu, C. hayashi: IEEE Trans. Magn. Vol. 15 (1979), p.1540.

Google Scholar

[18] I.W. Park, M. Yoon, Y.M. Kim, Y. Kim, H. Yoon, J.J. Song, V. Vokov and Y.J. Park: Solid state communications Vol. 44 (2003), p.385.

Google Scholar

[19] G. Kataby, Yu. Koltypin, A. Ulman, I. Felner, A. Gedanken: Applied Surface Science Vol. 201 (2002), p.191.

DOI: 10.1016/s0169-4332(02)00895-4

Google Scholar

[20] S.N. Kaul: Phys. Rev. Vol. 24 (1981), p.6550.

Google Scholar