Tangent Moduli of the Hencky Material Model Derived from the Stored Energy Function at Finite Strains

Abstract:

Article Preview

Tangent moduli associated with the linear logarithmic model of hyperelasticity are derived. These relations are crucial not only to theoretical analyses but also to wave propagation and ultrasonic testing. The tangent moduli as functions of stress determine the speed of propagating acoustic waves and, therefore, indirectly point to a possible occurrence of residual stress fields in elastic solids.

Info:

Periodical:

Edited by:

Jaroslav Pokluda

Pages:

327-330

Citation:

A. Kruisová and J. Plešek, "Tangent Moduli of the Hencky Material Model Derived from the Stored Energy Function at Finite Strains", Materials Science Forum, Vol. 482, pp. 327-330, 2005

Online since:

April 2005

Export:

Price:

$38.00

[1] M. Landa and J. Plešek: Ultrasonics Vol. 40 (2002), p.531.

[2] M. Kobayashi: International Journal of Plasticity Vol. 14 (1998), p.511.

[3] R. W. Ogden: Non-linear Elastic Deformation (Dover Publications, Inc., Mineola 1984).

[4] A. Hoger: International Journal of Solids and Structures Vol. 36 (1999), p.84.

[5] L. Anand: ASME Journal of Applied Mechanics Vol. 46 (1979), p.78.

[6] F. D. Murnaghan: Finite Deformation of an Elastic Solid (J. Wiley & Sons, New York 1951).

[7] M. Kobayashi: International Journal of Plasticity Vol. 14 (1998), p.523.

[8] J. E. Dorn and A. J. Latter: ASME Journal of Applied Mechanics Vol. 15 (1948), p.234.

[9] H. Hencky: Journal of Applied Mechanics Vol. 1 (1938), p.45.

[10] A. Hoger: International Journal of Solids and Structures Vol. 23 (1987), p.1645.

[11] A. Poživilová: Constitutive modelling of hyperelastic materials using the logarithmic description (PhD thesis, Czech Technical University, Prague, 2002).

[12] D. S. Hughes and J. L. Kelly: Physical Review Vol. 99 (1953), p.1145.