The Influence of Acid Treatment on the Nanostructure and Textural Properties of Bentonite Clays

Article Preview

Abstract:

The nanostructure and textural properties of acid-activated bentonite clays from the Bogovina coalmine were investigated. The acid activation was performed with HCl in the concentration range 1.5-7.5 M. The atomic force microscopy followed by image analysis was used in order to establish the influence of the acid treatment on the size of bentonite particles. Nitrogen adsorption-desorption isotherms at -196 °C were used to estimate the specific surface area, pore volume and pore size distribution. The acid treatment reduces the size of bentonite particles and increases the specific surface area and pore volume of the investigated bentonites. These effects are improved by increasing the acid concentration up to 4.5 M HCl. Further increase in acid concentration does not result in development of new porous structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

339-344

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Vaccari, Catal. Today, Vol. 41 (1998), p.53.

Google Scholar

[2] F. R. Valenzuela-Diaz and P. Souza- Santos, Quim. Nova, Vol. 24 (2001), p.345.

Google Scholar

[3] P. Komadel, Clay Minerals, Vol. 38 (2003), p.127.

Google Scholar

[4] N. Jovanović, S. Brezovska, D. Burevski, V. Boševska, B. Panova and Z. Vuković, J. Serb. Chem. Soc., Vol. 61 (1996), p.453.

Google Scholar

[5] S. Mendioroz, J. A. Jares, I. Benito, C. Pesquera, P. Gonzales and C. Blanco, Langmuir, Vol. 3 (1987), p.676.

Google Scholar

[6] J. Temuujin, Ts. Jadambaa, G. Burmaa, Sh. Erdenechimeg, J. Amarasanaa and K.J.D. MacKenzie, Ceram. Int., Vol. 30 (2004), p.251.

DOI: 10.1016/s0272-8842(03)00096-8

Google Scholar

[7] W. P. Gates, J. S. Anderson, M. D. Raven and G. J. Churchman, Appl. Clay Sci., Vol. 20 (2002), p.189.

Google Scholar

[8] G. E. Christidis, P. W. Scott and A.C. Dunham, Appl. Clay Sci., 12 (1997), p.329.

Google Scholar

[9] P. Falaras, I. Kovanis, F. Lezou and G. Seiragakis, Clay Miner., Vol. 34 (1999), p.221.

DOI: 10.1180/000985599546181

Google Scholar

[10] Lj. Rožić, T. Novaković, M. Anić, Z. Vuković and D. Jovanović, Proc. 6h Int. Conf. Fund. Appl. Aspects Phys. Chem. Belgrade, Serbia (2002), p.520.

Google Scholar

[11] J. Cuadros and S. P. Altaner, Am. Mineral., Vol. 83 (1998), p.762.

Google Scholar

[12] S. H. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity (Academic Press, New York. 1967).

Google Scholar

[13] F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powders and Porous Solids (Academic Press, London 1999).

DOI: 10.1016/b978-012598920-6/50002-6

Google Scholar

[14] B.C. Lippens and J. H de Boer, J. Catal., Vol. 4 (1965), p.319.

Google Scholar

[15] A. Lecloux and J. P. Pirard, J. Colloid Interf. Sci., Vol. 70 (1979), p.265.

Google Scholar

[16] D. Dollimore and G.R. Heal, J. Appl. Chem., Vol. 14 (1964), p.109.

Google Scholar

[17] M.M. Dubinin, Progress in Surface and Membrane Science, 9 (Academic Press, New York, NY, p.1).

Google Scholar

[18] K. Sing, D. Everett, R. Haul, L. Moscou, R. Perolti, J. Rouguerol and T. Siemieniewska, Pure Appl. Chem., Vol. 57 (1985), p.603.

Google Scholar

[19] M.L. Pèrez-Rea, F. Rojas and V. M. Castano, Mat. Res. Innovat, Vol. 7 (2003), p.341.

Google Scholar