Reduction of NiO-WO3 Oxide Mixtures Synthesized by Gel-Combustion Technique: A Route to Ni-W Alloys

Article Preview

Abstract:

The mixtures NiO-WO3 were synthesized by the combustion of gels obtained by drying common solutions of nickel nitrate, polytungstic acid and citric acid. The X-ray diffractograms of oxide mixtures confirmed mutual interaction of oxides during synthesis leading to a new phase, NiWO4. The reduction of oxide mixtures in hydrogen atmosphere was investigated thermogravimetrically. The temperature of reduction of the oxide mixture lies between the temperatures of reduction of pure oxides and monotonously increases with the increase in WO3 mole fraction; however, the reduction itself is a multi-step process, preferably in the composition region rich in NiO. The X-ray diffractometry of metallic residues evidenced Ni-W alloys and tungsten excess to be the reduction products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-350

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.R. Pederson, G.D. Maupin, W.J. Weber, D.J. McReady, R.W. Stephens, Mat. Lett. 10 (1991), p.437.

Google Scholar

[2] J. Huang, H. Zhuang, WenLan Li, Mat. Res. Bull. 38 (2003), p.149.

Google Scholar

[3] R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Mat. Lett. 57 (2003), p.1151.

Google Scholar

[4] X. -H. Wang, L.L.Z. Gui, S. Shu, J. Zhou, Mat. Chem. Phys. 77 (2002), p.248.

Google Scholar

[5] D. Jugovic, N. Cvjeticanin, V. Kusigerski, S. Mentus, J. Optoelectronics and Advanced Materials, 5 (2003), p.343.

Google Scholar

[6] Z. Jiao, M. Wu, Z. Qin, H. Xu, Nanotechnology, 14 (2003), p.458.

Google Scholar

[7] Y. Yoshimura, T. Sato, H. Shimada, N. Matsubayashi, M. Imamura, A. Nishijima, M. Higo, S. Yoshitomi, Catalysis Today, 29 (1996), p.221.

DOI: 10.1016/0920-5861(95)00275-8

Google Scholar

[8] J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, J.Y. Kim, M. Perez, J. Am. Chem. Soc. 124 (2002), p.346.

Google Scholar

[9] J.T. Richardson, R. Scates, M.V. Twigg, Appl. Phys. A: General 246 (2003), p.137.

Google Scholar

[10] H. Okamoto, A. Ishikawa, Appl. Phys. Letters, 55 (1989), p.19239.

Google Scholar

[11] H. -J. Kim, J. -H. Lee, I. -H. Sohn, T. -J. Hwang K. -Y. Lee, Korea_Australia Rheology Journal 14 (2002), p.71.

Google Scholar

[12] S. Sridar, D. Sichen, S. Seetharaman, Metall. Mater. Trans. B, 25B (1994), p.391.

Google Scholar

[13] J.A. Bustnes, D. Sichen, S. Seetharaman, Metall. Mater. Trans. B, 26B (1995), p.547.

Google Scholar

[14] R. Morales, Scan. J. Metallurgy 32 (2003), p.263.

Google Scholar

[15] S. Yao, S. Zhao, H. Gao, M. Kowaka, Corrosion, 53 (1966), p.183.

Google Scholar

[16] L. Zhu, O. Younes, N. Ashkenasy, Y. Shacham-Diamond, E. Gileadi, Appl. Surface Science 200 (2002), p.1.

Google Scholar

[17] Powder Diffraction File, Joint Committee on Powder diffraction, International Center for Diffraction Data, Swarthmore, PA, (1987).

Google Scholar

[18] K.E. Poulsen, S. Rubek, E.W. Langer, Scripta Metallurgica, 8 (1974), p.1297.

Google Scholar

[19] J.M. Waalsh, M.J. Donachie, J.R., Metall. Trans. 4 (1973), p.2854.

Google Scholar

[20] M.M. Jaksic, Electrochim. Acta, 45 (2000), p.4085.

Google Scholar