Characterization and Catalytic Activity of Poly(4-Vinylpyridine-Co-Divinylbenzene)-Co2+ Complex

Article Preview

Abstract:

Poly(4-vinylpyridine-co-divinylbenzene)-Co2+ was characterized using infrared spectroscopy (IR), thermogravimetric analysis (TG-DTA), N2-physisorption and polarography. Thermal analysis suggests sufficient thermal stability of the polymer support, under reaction conditions. From polarography measurements, the Co2+ content on polymer-supported catalysts is estimated and it was proved that no significant leaching occurred during the activity tests. At the molecular level, FTIR of P4VP-DVB-Co2+ reveals that the pyridine nitrogen lone pair coordinates to the metal center in the polymeric complex. The obtained P4VP-DVB-Co2+ catalysts performed interesting catalytic activity in reaction of the cyclohexane oxidation with air, indicating that increasing Co2+ content lowers the initiation temperature and raises the decomposition of cyclohexylhydroperoxide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-368

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kulkarni, M. Alurkar, A. Kumar, Appl. Catal. A 142 (1996), p.243.

Google Scholar

[2] Xu SG, Xi XG, Shi J, Cao SK, J. Mol. Catal. A 160 (2000), p.287.

Google Scholar

[3] G. Olason, D.C. Sherrington, React. Funct. Polym. 42 (1999), p.163.

Google Scholar

[4] L.Q. Lei, X. Han J.M. S, Pure Appl. Chem. A 36 (1999), p.1337.

Google Scholar

[5] A. Drelinkiewicz, M. Hasik, S. Quillard, C. Paluszkiewicz, J. Mol. Structure 205 (1999), p.511.

Google Scholar

[6] G.L. Goe, C.R. Marston, E.F.V. Scriven, E.E. Sowers in: Catalysis of Organic Reactions (Ed. D.W. Blackburn, Marcel Dekker, Inc., New York, 1989), p.275.

Google Scholar

[7] F. Gozzo, J. Mol. Catal. A 171 (2001), p.1.

Google Scholar

[8] U. Shuchardt, W.A. Carvalho, E.V. Spinacé, Synlett 10 (1993), p.713.

Google Scholar

[9] Ullmann's Encyclopedia of Industrial Chemistry (VerlagChemie, Weinheim, 1975), p.680.

Google Scholar

[10] I.V. Berezin, E.T. Denisov, N.M. Emanuel, The oxidation of cyclohexane (Pergamon Press, New York, 1969), p.274.

Google Scholar

[11] J.D. Chen, R.A. Sheldon, J. Catal. 153 (1995), p.1.

Google Scholar

[12] A.A. Uharskii, M.M. Slinko, A.D. Berman, O.V. Krilov, Kinetika i Kataliz 22 (1981), p.1353.

Google Scholar

[13] F. Rouquerol, J. Rouquerol, K. Sing: Adsorption by Powders and Porous Solids (Academic Press, London, 1999).

DOI: 10.1016/b978-012598920-6/50002-6

Google Scholar

[14] D. Dollimore, G. R. Heal, J. Appl. Chem. Vol. 14 (1964), p.109.

Google Scholar

[15] G.B. Shul'pin, J. Mol. Catal. A 189 (2002), p.36.

Google Scholar

[16] Gregg, S. H., Sing, K. S., Adsorption Surface Area and Porosity (Academic Press, New York 1967).

Google Scholar

[17] M.M. Dubinin, Progress in Surface and Membrane Science, 9 (Academic Press, New York, NY), p.1.

Google Scholar

[18] M.P. McCurdie, L.A. Belfiore, Polymer 40 (1999), p.2889.

Google Scholar

[19] K.H. Wu, Y.R. Wang, W.H. Hwu, Polym. Degrad. Stab. 79 (2003), p.195.

Google Scholar

[20] B.W. Wojciehowski, N.M. Rice: Experimental Methods in Kinetic Studies (Elsevier Science B.V., Amsterdam, 2003).

Google Scholar

[21] J.F. Black, J. Am. Chem. Soc. 100 (1978), p.527.

Google Scholar