2-D Computer Simulation of Rapid Solidification

Article Preview

Abstract:

Two-dimensional numerical model is adopted to analyze the heat transfer process during solidification of the sample melted in an Arc-image furnace. Numerical solution of this complex problem enabled us to calculate the temperature distribution in both sample and substrate, including the phase change phenomena. Also, the effects of process parameters on the solidification of the sample melted on substrate that is cooled by water can be investigated numerically. The parameters include sample size, contact area size between the sample and the substrate, and degree of undercooling associated with rapid phase change and moving interface. The results obtained reveal that these parameters have strong effect on temperature distribution during solidification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

381-386

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku, Nature 389 (1997), p.49.

DOI: 10.1038/37937

Google Scholar

[2] V.S. Stubican and R.C. Bradt, Ann. Rev. Mater. Sci. 11 (1981), p.267.

Google Scholar

[3] T. Mah, T.A. Parthasarathy and L.E. Matson, Ceram. Eng. Sci. Proc. 11[9-10] (1990), p.1617.

Google Scholar

[4] Y.N. Vil'k, E.A. Il'in, A.Y. Timofeev, S.S. Semenov, V.S. Niss, Y.G. Alekseev and V.N. Kovalevskij, Ogneupory 5 (1992), p.11.

Google Scholar

[5] S.N. Lakiza, A.V. Shevchenko, Z.A. Zaitseva and Y.A. Knysh, Soviet Powder Metall. & Met. Ceram. 29 (1990), p.3.

DOI: 10.1007/bf00796080

Google Scholar

[6] J. McKittrick and G. Kalonji: Mater. Sci. Eng. A (1997), p.90.

Google Scholar

[7] J. McKittrick, G. Kalonji and T. Ando, J. Non-Cryst. Solids 94 (1987), p.163.

Google Scholar

[8] N. Claussen, G. Lindemann and G. Petzow, Ceram. Int. 9 (1983), p.83.

Google Scholar

[9] F.P. Glasser and X. Jing, Br. Ceram. Trans. 91 (1992), p.195.

Google Scholar

[10] T.S. Laszlo, Image Furnace Techniques: Technique of Inorganic Chemistry, Vol. V (1965), Inter-Science Publishers, New York.

Google Scholar

[11] M. Yoshimura, J. Coutures and M. Foex, J. Mater. Sci., 12 (1977), p.415.

Google Scholar

[12] P. Duwaz and R.H. Willens, Trans. Met. Soc. AIME, 227 (1963), p.362.

Google Scholar

[13] P.T. Sarjeant and R. Roy, J. Amer. Ceram. Soc., 50 (1967), p.500.

Google Scholar

[14] H. Matya, B.C. Giessen and N.J. Grant, J. Inst. Metals, 96 (1968), p.30.

Google Scholar

[15] J.M. Calderon-Moreno and M. Yoshimura, Scripta Mat., 44 (2001), p.2153.

Google Scholar

[16] M. Yoshimura and S. Somiya, Proc. Intern. Conf. on Rapidly Quenched Metals, Eds. T. Masumoto and K. Suzuki, (Japan Institute of Metals, Sendai, Japan, 1982), p.23.

Google Scholar

[17] T. Yamada, M. Yoshimura and S. Somiya, High Temp. -High Press. 18 (1986), p.377.

Google Scholar

[18] J. Crank, The Mathematics of Diffusion (Oxford University Press, London, 1956).

Google Scholar

[19] NIST Property Data Summaries for Advanced Materials, Ceramics WebBook (http: /www. ceramics. nist. gov/srd/summary/advmatdb. htm).

Google Scholar

[20] T. Yamada, M. Yoshimura and S. Somiya: J. Am. Ceram. Soc.

Google Scholar

[69] 10 (1986), C-243.

Google Scholar

[21] F.P. Incropera and D.P. DeWitt: Introduction to Heat Transfer (John Wiley & Sons, New York, 2002).

Google Scholar