Materials Science Forum
Vol. 513
Vol. 513
Materials Science Forum
Vol. 512
Vol. 512
Materials Science Forum
Vols. 510-511
Vols. 510-511
Materials Science Forum
Vol. 509
Vol. 509
Materials Science Forum
Vol. 508
Vol. 508
Materials Science Forum
Vols. 505-507
Vols. 505-507
Materials Science Forum
Vols. 503-504
Vols. 503-504
Materials Science Forum
Vol. 502
Vol. 502
Materials Science Forum
Vols. 500-501
Vols. 500-501
Materials Science Forum
Vols. 498-499
Vols. 498-499
Materials Science Forum
Vols. 495-497
Vols. 495-497
Materials Science Forum
Vol. 494
Vol. 494
Materials Science Forum
Vols. 492-493
Vols. 492-493
Materials Science Forum Vols. 503-504
Paper Title Page
Abstract: It is shown that the twist hydroextrusion results in the formation of fine crystalline structure with grains of elliptical shape oriented at an angle of ≈450 to the axis of deformation. Mechanical properties of the processed copper are characterized by a high level of strength and plasticity characteristics. Peculiarities of the formed structure are inherited under the subsequent rolling, they are in untypical location of grains relative to the axis of deformation.
591
Abstract: Substructure and structure formation as well as functional properties of thermomechanically treated Ti-Ni wire have been studied using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and mechanical. The low- temperature themomechanical treatment (LTMT) was carried out by rolling at room temperature in a true strain range e = 0.3 to 1.9. It was shown that severe plastic deformation (e=1.9) of Ti-50.0at.%Ni alloy results in partial amorphization and formation of nanocrystalline austenite structure during post-deformation annealings up to 400 °C. As a result, the fully recoverable strain and recovery stress become much higher than the values reachable after traditional LTMT (e=0.3 to 0.88) with post-deformation annealing which creates a poligonized dislocation substructure.
597
Abstract: A significant change in microstructure occurs during the application of severe plastic deformation (SPD) such as by equal-channel angular pressing (ECAP). In this study, intense plastic strain was imposed on an Al-10.8wt%Ag alloy by the ECAP process. The amount of strain was controlled by the numbers of passes. After 1 pass of ECAP, shear bands became visible within the matrix. With increasing numbers of ECAP passes, the fraction of shear bands was increased. In this study, the change in microstructures was examined by three-dimensional electron tomography (3D-ET) in transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). With this 3D-ET method, it was possible to conduct a precise analysis of the sizes, widths and distributions of the shear bands produced by the ECAP process. It is demonstrated that the 3D-ET method is promising to understand mechanisms of microstructural refinement using the ECAP process.
603
Abstract: The influence of the equal channel angular pressing (ECAP) temperature (150-350oC) on microstructure of the AM60 magnesium alloy has been investigated using transmission electron microscopy. It was demonstrated that application of various ECAP regimes leads to significant difference in a grain size and volume fraction of precipitates in investigated material. Thermal stability of precipitates and correlation between microstructure and tensile strength are discussed.
609
Abstract: An oxygen free high conductivity (OFHC) copper (99.99%) was intensely deformed by the accumulative roll-bonding (ARB) process up to equivalent strain of 4.8 at ambient temperature. The microstructure evolution during the ARB process was explained by grain subdivision. The deformed specimens revealed dislocation cell structures at low strain and elongated ultra fine grains separated by high angle boundaries at high strain. The spacing of the high angle lamellar boundary exponentially decreased as a function of strain. The fractions of high angle boundaries (HAB) and the low angle boundaries (LAB) were nearly equal even at strain of 3.2, which was significantly different from the ARB processed Al alloys and ferritic steel where the HAB fraction was above 70% at the same strain. TEM observations indicated a mixed microstructure of dislocation boundaries and cell walls with dislocation tangle at low strain of 1.6, and small recrystallized grains partly appeared above strain of 3.2. As a result, the LAB fraction due to partial recrystallization was high even at strain of 4.8. The occurrence of recrystallization is attributed to high purity of the OFHC copper, the accumulated dislocation density, and the adiabatic heating during the ARB process of one-pass large reduction without lubrication.
615
Abstract: Copper and nickel single crystals of high purity with a crystallographic orientation, (001) and (111) respectively, were deformed by applying high pressure torsion (HPT) at room temperature. Special interest was devoted to the structural evolution of the material, which was characterized by electron backscatter diffraction (EBSD) and X-ray texture analysis as well. In addition back scatter electron investigations were applied to characterize shape and size of the new formed structure. Furthermore the study is focused on the micro structural and micro textural evolution that lead to the increase of missorientation angle with increasing plastic deformation. We observed an increasing fragmentation of the structure with increasing plastic equivalent strain up to a level where the grain size is saturated. The saturation could be traced back to dynamical recovery and recrystallisation during the deformation process that is depending on the purity of the material.
621
Abstract: The limit of dislocation density was investigated by means of mechanical milling (MM) treatment of an iron powder. Mechanical milling enabled an ultimate severe deformation of iron powder particles and dislocation density in the MM iron powder showed the clear saturation at around the value of 1016m-2. On the other hand, the relation between hardness and dislocation density was examined in cold-rolled iron sheets, and the linear Bailey-Hirsch relationship; HV[GPa]=0.7+3×10-8ρ1/2 was obtained in the dislocation density region up to 3×1015m-2. Extrapolation of the Bailey-Hirsch relationship indicated that the dislocation strengthening should be limited to about 3.7GPa in Vickers hardness which corresponds to about 1.1GPa in 0.2% proof stress.
627
Abstract: Low temperature mechanical characteristics under quasistatic uniaxial tension and compression have been studied of ultra fine-grained structural state of polycrystalline titanium – nanostructured titanium, processed by the equal channel angular pressing (ECAP). Values of the yield stress and the uniform plasticity at 300, 77, and 4.2 K for nanostructured (NS) and polycrystalline coarse-grained (CG) titanium of different commercial purity have been compared.
633
Abstract: Nanofilamentary wires consisting of a Cu matrix reinforced by body centred cubic (bcc) nanofilaments were produced by successive hot extrusion and large strain drawing. Effects of this severe plastic deformation on the microstructure and the mechanical properties of two systems, Cu/Ta and Cu/Nb/Cu “co-cylindrical” structure, are presented and compared with the nanofilamentary Cu/Nb wires.
639
Abstract: Specific features of mechanical behaviour of ultra fine grained iron subjected to friction treatment with nitriding (FN) were clarified by comparison with that induced by friction treatment (FT) with air. Mechanical parameters such as Young’s modulus, nanohardness, and plasticity characteristic δA were found to be of high sensitive both to the scale of grain structure and to iron modification by nitrogen. Young’s modulus tends to decrease and Hall-Petch low fails to describe correlation between grain structure and hardness for submicro-grained and nanocrystalline iron. Hall-Petch coefficient, ky, decreases as grain size decreases within submicro-grained and, then, nano grained sections and it takes even negative value in nano grained section modified by nitrogen. Parameter δA is found to be dependent on combination of hardness and Young’s modulus, resulting in its variation with decreasing the grain size. The presence of secondary nanocrystalline Fe4N phase fundamentally changes mechanical behaviour of nanocrystalline iron, leading to strengthening the grain boundaries and triple junctions.
645