Materials Science Forum Vols. 503-504

Paper Title Page

Abstract: The grain boundary sliding and the formation of slipped bands and cavitations during biaxial tensile deformation were examined in fine grained Al-Mg alloy. Biaxial tensile testing was conducted with cruciform specimens at initial strain rates of 10-4 to 101s-1. It was found that at the same equivalent strain conditions, the number of cavities under biaxial tension is significantly greater than that under uniaxial tension. A greater prevalence of slipped bands and grain separations were clearly observed under biaxial stress than under uniaxial stress. It was suggested that development of slipped bands resulted from the formation of elongated cavities and multiple deformed bands under biaxial stress. Additionally, the m-value under biaxial stress remained at about 0.3 over a wide range of strain rates. The effects of grain separation and formation of cavities were related to the motion of grain boundary sliding, grain size and loading conditions.
475
Abstract: Structure formation in TiNi-based shape memory alloys depending on deformation temperature (-196 °C to 400 °C) and pressure (4 to 8 GPa) under conditions of high-pressure torsion (HPT) was studied using TEM and X-ray diffraction methods. The tendency to form an amorphous structure depends on relative positions of the deformation temperature and Ms temperature. Isothermal martensitic transformation is observed in the Ti – 48.5 % Ni alloy as a result of 10-year keeping at RT after HPT. Increasing of pressure suppresses the tendency to form an amorphous structure. The upper deformation temperature limits for amorphous and nanocrystalline structures formation are determined. The thermomechanical conditions of the equal-channel angular pressing for obtaining actual nanocrystalline structure are recommended.
481
Abstract: The effect of equal-channel angular pressing (ECAP) on the pitting corrosion resistance of Al and Al-Mg alloy was investigated by means of polarization curves in solutions containing 300 ppm of Cl- and by surface analysis. The potentials for pitting corrosion of Al and Al-Mg alloy were evidently shifted to the noble direction by using the ECAP process, indicating that this process improves resistance to pitting corrosion. This increase in resistance seems to be attributable to the increase in formation rate of Al oxide films due to the increase in grain boundary with ECAP. The pitting corrosion resistance of Al and Al-Mg alloy anodized galvanostatically in H2SO4 solution after ECAP was also investigated using electrochemical techniques. The pitting corrosion resistance of Al and Al-Mg alloy was remarkably improved by anodizing. However, the pitting corrosion resistance of anodized Al-Mg alloy was better without ECAP than with ECAP.
487
Abstract: A study was carried out on a ECAP processed Sc-containing Al-Mg-Si alloy and on a reference 6082 alloy to investigated grain structure evolution during severe plastic deformation and post-ECAP aging behaviour. The results showed that the mechanism of ultrafine structure development was substantially unchanged with respect to a reference Sc-free alloy. Also the aging sequence and precipitation kinetics of the two alloys revealed to be comparable. The ECAP processed samples of the 6082 reference alloy showed a clear recrystallization peak at temperatures in the range 315-360°C, depending on the amount of strain experienced, whereas the Sc-containing alloy retained its ultrafine structure up to temperatures well exceeding 450°C, under the conditions reproduced in a DSC temperature scan.
493
Abstract: Mechanical deformations with/without elemental substitutions have been carried out on Mg-Ni-based alloys to improve their hydriding properties. The alloys Mg-x at.%Ni (x = 33, 38, 43 and 50) with different nanometer-scale structures were successively synthesized by mechanical milling of Mg2Ni mixed with various amounts of additional Ni, and the relations between their structural and hydriding properties were investigated in detail. By milling only Mg2Ni, nanostructured Mg2Ni composed of the intra- and inter-grain regions was obtained (x = 33). Amorphous MgNi (a-MgNi) as a third region was dispersed around the nanostructured Mg2Ni by milling of Mg2Ni mixed with additional Ni (x = 38 and 43), and the pure amorphous MgNi was homogeneously synthesized in equivalent composition (x = 50). The coordination numbers and interatomic distances of the Mg-D and Ni-D correlations in the amorphous MgNi-D show that deuterium occupies the interstitial tetrahedral site composed of nearly [2Mg2Ni]. According to the specific structural properties, there is obvious miscibility gap (plateau) pressure higher than 1 × 10-4 MPa at room temperature even in the amorphous phase, and the total hydrogen content reached up to 2.2 mass%. Further studies on an amorphous MgNi-based system were carried out to clarify the effect of the short-range ordering on the structural and hydriding properties due to substitution of Mg- and Ni-sites by various elements.
499
505
Abstract: In the present work, low carbon low alloy submicro-steel sheet has been developed successfully by severe warm-rolling (SWR) at 500 °C through a single pass. The result shows submicro-structure can be fabricated by severe rolling. The formation of the submicro-structure is attributed to the grain refinement mechanism induced by the severe plastic deformation (SPD). The refinement involves the cutting and subdividing of the original micro-crystals into ultrafine grains by dense dislocation arrays. To a certain extent, dynamic recrystallization in ferrite during SWR also seems to contribute to the formation of the submicro-structure. The thermal stability of the submicro-steel was investigated by annealing the steel at different temperatures. The investigation indicated that the submicro-steel can be subjected to annealing at 550°C without apparent grain growth. The unusually high thermal stability can be attributed to the pining effect of numerous uniformly distributed nano-precipitates in the steel. The sizes of the nano-precipitates belong to two different orders. The average diameter of the large precipitates is about 30 nm and the smaller one less than 10 nm.
511
Abstract: The current work presents new results of investigation of properties and structure of nanocrystalline and submicrocrystalline Cu-1%Cr-0.7%Al alloy. Two severe plastic deformation (SPD) techniques were applied to refine the structure: high pressure torsion and equal-channel angular pressing (ECAP). The first technique was applied to conduct preliminary studies of the alloy different thermal treatments as before SPD as well as after it. A new technological thermomechanical technique for processing of bulk billets of Cu-1%Cr-0.7%Al alloy possessing an ultrafine grained structure was developed on the basis of the obtained results. This technique comprises a combination of ECAP and other deformational processes with the thermal treatment. High values of the tensile strength and yield stress - 700 MPa and 16% accordingly – have been obtained as a result of such treatment, whereas these values after conventional treatment consisted 450 MPa and 20% respectively.
515
Abstract: Strain-induced grain refinement in a magnesium alloy AZ31 was studied in multi-directional forging (MDF) at a temperature range from 423K to 623K and at a strain rate of 3x10-3s-1. MDF with a pass strain of 0.8 was carried out to high cumulative strains of around 5 with changing of the loading direction during decreasing temperature from pass to pass. The structural changes can be characterized by the evolution of many mutually crossing kink bands at low strains followed by increase in their number and misorientation, finally resulting in a fully developed fine-grains at high strains. MDF with decreasing temperature can accelerate the evolution of much finer grains and the improvement of plastic workability. An average grain size of 0.3 μm is formed at an accumulative strain of 4.8 and at 423K. It is concluded that grain refinement under MDF conditions occurs by a series of deformation-induced continuous reactions; that is essentially similar to continuous dynamic recrystallization (cDRX).
521
Abstract: ZWK510 (Mg-5.0wt%Zn-0.9wt%Y-0.2wt%Zr) magnesium alloy containing Mg3YZn6 quasicrystal phase was prepared by conventional permanent mold casting. Part of the cast ingot was subjected to equal channel angular pressing (ECAP) directly; another part of the cast ingot was extruded initially, then ECAP was applied to the extruded alloy. After 4-pass ECAP, the fraction of coarse grains of the as-cast alloy was decreased to about 30%, and the grain size of fine grain was decreased to about 2 μm. Both strength and ductility of the as-cast ZWK510 alloy were significantly improved with increasing ECAP passes, which was resulted from broken and dispersed I-phase, and fine grains formed due to recrystallization. The as-extruded ZWK510 had an initial grain size of about 2 μm and bands of quasicrystal phase parallel to the extrusion direction. After the extruded alloy was subjected to ECAP, the grain size of the extruded alloy was further refined, the grain size was refined to below 0.5 um after 8-pass ECAP; and the quasicrystal phase was further broken and dispersed in the matrix. After ECAP, the elongation to failure of the extruded alloy was improved. However, both yield strength and ultimate tensile strength were decreased, which is considered to be resulted from the texture modification during ECAP.
527

Showing 71 to 80 of 162 Paper Titles