SiC Warm-Wall Planetary VPE Growth on Multiple 100-mm Diameter Wafers

Article Preview

Abstract:

Experimental results are presented for SiC epitaxial layer growth employing a large-area, up to 8x100-mm, warm-wall planetary SiC-VPE reactor. This high-throughput reactor has been optimized for the growth of uniform 0.01 to 80-micron thick, specular, device-quality SiC epitaxial layers with low background doping concentrations of <1x1014 cm-3 and intentional p- and n-type doping from ~1x1015 cm-3 to >1x1019 cm-3. Intrawafer layer thickness and n-type doping uniformity (σ/mean) of ~2% and ~8% have been achieved to date in the 8x100-mm configuration. The total range of the average intrawafer thickness and doping within a run are approximately ±1% and ±6% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Pages:

159-162

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. M. Frijlink: J. Crystal Growth, Vol. 93 (1988) p.207.

Google Scholar

[2] A. A. Burk, M. J. O'Loughlin, and S. S. Mani: Silicon Carbide and Related Materials 1997, Materials Science Forum Vols. 264-268 (1998) p.83.

Google Scholar

[3] A. A. Burk, Jr., M. J. O'Loughlin, and H. D. Nordby, Jr.: J. Crystal Growth, Vol. 200 (1999), p.458.

Google Scholar

[4] M. J. O'Loughlin, H. D. Nordby, Jr., and A. A. Burk: Mat. Res. Soc. Symp. Proc. Vol. 572 (1999) p.161.

Google Scholar

[5] A. A. Burk, M. J. O'Loughlin, M. J. Paisley, A. R. Powell, M. F. Brady, R. T. Leonard, St.G. Müller and S.T. Allen: Silicon Carbide and Related Materials 2004, Materials Science Forum Vols. 483-485 (2005) p.137.

Google Scholar

[6] B. Thomas and C. Hecht: Silicon Carbide and Related Materials 2004, Materials Science Forum Vols. 483-485 (2005) p.141.

Google Scholar

[7] Fei Yan and W. J. Choyke, University of Pittsburgh, Pittburgh, PA.

Google Scholar

[8] S. Krishnaswami and A. Agarwal, these proceedings.

Google Scholar

[9] A. Veneroni, F. Omarini, M. Masi, S. Leone, M. Mauceri, G. Pistone, and G. Abbondanza: Silicon Carbide and Related Materials 2004, Materials Science Forum Vols. 483-485 (2005) p.57.

Google Scholar

[10] J. J. Sumakeris, M. K. Das, S. Ha, E. Hurt, K. Irvine, M. J. Paisley, M. J. O'Loughlin, J. W. Palmour, M. Skowronski, H. McD. Hobgood, and C. H. Carter, Jr.: Silicon Carbide and Related Materials 2004, Materials Science Forum Vols. 483-485 (2005).

Google Scholar

[5] this work.

Google Scholar

[10] Susceptor Area, cm2 616 616 940 1385 1521 na na na Total Useful Wafer Area, cm2 * 34 92 241 382 509 172 78 103 Growth Rate, µm/hr 3 3 4. 9 5 10 6 17. 8 13 cm2 of 10 µm thick epi/day^ 141 377 1273 2036 3490 991 615 758 Normalized Area Throughput 1 3 9 14 25 7 4 5 Thick Uniformity, %σ/mean 2. 4 3 1 3 2 2 0. 5 1. 6 Doping Uniformity, %σ/mean 3. 6 7 5 9 8 9 2 4. 8 *-assuming a 5 mm edge exclusion ^-assuming a 90 minute unload/load/purge/heat and 90 minute cool-down/purge per growth cycle.

Google Scholar