A Study of Recrystallization and Phase Transitions in Intermetallic Titanium Aluminides by In Situ High-Energy X-Ray Diffraction

Abstract:

Article Preview

High-energy synchrotron X-ray diffraction is a novel and powerful tool for bulk studies of materials. In this study, it is applied for the investigation of an intermetallic γ-TiAl based alloy. Not only the diffraction angles, but also the morphology of reflections on the Debye-Scherrer rings are evaluated in order to approach lattice parameters and grain sizes as well as crystallographic relationships. An in-situ heating cycle from room temperature to 1362 °C has been conducted starting from massively transformed γ-TiAl which exhibits high internal stresses. With increasing temperature the occurrence of strain relaxation, chemical and phase separation, domain orientations, phase transitions, recrystallization processes, and subsequent grain growth can be observed. The data obtained by high-energy synchrotron X-ray diffraction, extremely rich in information, are interpreted step by step.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

1519-1524

Citation:

K. D. Liss et al., "A Study of Recrystallization and Phase Transitions in Intermetallic Titanium Aluminides by In Situ High-Energy X-Ray Diffraction", Materials Science Forum, Vols. 539-543, pp. 1519-1524, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] K. -D. Liss, A. Bartels, A. Schreyer, H. Clemens: High energy X-rays: A tool for advanced bulk investigations in materials science and physics, Textures and Microstructures 35-3/4 pp.219-252 (2003).

DOI: https://doi.org/10.1080/07303300310001634952

[2] H. Clemens, H. Kestler: Processing and applications of intermetallic γ-TiAl-based alloys, Advanced Engineering Materials 2-9 pp.551-570 (2000).

DOI: https://doi.org/10.1002/1527-2648(200009)2:9<551::aid-adem551>3.0.co;2-u

[3] R. Gerling, A. Bartels, H. Clemens, H. Kestler, F. P. Schimansky: Structural Characterization and Tensile Properties of a High Niobium Containing Gamma TiAl Sheet Obtained by Powder Metallurgical Processing, Intermetallics 12 pp.275-280 (2004).

DOI: https://doi.org/10.1016/j.intermet.2003.10.005

[4] A. Bartels, S. Bystrzanowski, H. Chladil, H. Leitner, H. Clemens, R. Gerling, F. -P. Schimansky: Massive Transformation in High Niobium Containing TiAl Alloys, Materials Research Symposium Proceedings 842 p.5. 48. 1-6 (2005).

DOI: https://doi.org/10.1557/proc-842-s5.48

[5] M. J. Blackburn,. in The Science, Technology and Application of Titanium Alloys, Plenum Press (1970) p.633.

[6] Y. He, R. B. Schwarz, T. Darling, M. Hundley, S. H. Whang, Z. M. Wang: Elastic Constants and Thermal Expansion of Single Crystal Gamma-TiAl from 300 to 750 K, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing 240 pp.157-163 (1997).

DOI: https://doi.org/10.1016/s0921-5093(97)00575-3

[7] M. Zupan, K. J. Hemker: High Temperature Microsample Tensile Testing of Gamma-TiAl, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing 319 pp.810-814 (2001).

DOI: https://doi.org/10.1016/s0921-5093(01)01042-5

[8] K. -D. Liss, A. Bartels, H. Clemens, S. Bystrzanowski, A. Stark, T. Buslaps, F. -P. Schimansky, R. Gerling, A. Schreyer: Recrystallization and phase transitions in a γ-TiAl based alloy as observed by ex- and in-situ high-energy X-ray diffraction, Acta Materialia submitted (2005).

DOI: https://doi.org/10.1016/j.actamat.2006.04.004

[9] D. Phelan, R. Dippenaar: Widmannstätten Ferrite Plate Formation in Low-Carbon Steels, Metallurgical and Materials Transactions A 35A pp.3701-3706 (2004).

DOI: https://doi.org/10.1007/s11661-004-0276-4