Multiscale Modelling of Plastic Deformation of Polycrystals: Implementation of Texture-Based Anisotropy in Engineering Applications (FE Codes for Forming, Prediction of Forming Limit Curves)

Article Preview

Abstract:

Finite element models for metal forming are used to design and optimise industrial forming processes. The limit strain in sheet metal forming can be predicted for monotonic loading or strain paths with changes. Models like these should be as accurate as possible in order to be useful, and hence take the texture, microstructure and substructure (dislocation patterns) into account. To achieve this, a hierarchical type of modelling is proposed in order to maintain the balance between calculation speed (required for engineering applications) and accuracy. In that case, FE models to be used at the engineering length scale work with an analytical constitutive model, the parameters of which are identified using results of multilevel models (meso-scale with an homogenisation procedure). The analytical model to be used at macro-scale will be discussed, as well as the identifications procedure. The later make use of meso-scale models. Finally an example will be given (formability of a sheet material).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

3454-3459

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Van Houtte, S. Li, M. Seefeldt and L. Delannay: Int. J. Plasticty Vol. 21 (2005) p.589.

Google Scholar

[2] R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., Vol. 41 (1993) p.2611.

Google Scholar

[3] P. Erieau, C. Rey, Int. J. Plasticity, Vol. 20, (2004) p.1763.

Google Scholar

[4] B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, E. Aernoudt: Acta Mater. Vol. 49 (2001), p.1607.

Google Scholar

[5] P.R. Dawson, S.R. MacEwen and P.D. Wu: International Materials Reviews, Vol. 48 (2003), p.86.

Google Scholar

[6] A.M. Habraken and L. Duchêne: Int. J. Plasticity, Vol. 20 (2004), p.1525.

Google Scholar

[7] Raabe D, Roters F, Intern. J. Plasticity, VoL 20 (2004), p.339.

Google Scholar

[8] P. Van Houtte: Int. J. Plasticity Vol. 10 (1994), p.719.

Google Scholar

[9] P. Van Houtte and A. Van Bael: Int. J. Plasticty Vol. 20 (2004), p.1505.

Google Scholar

[10] P. Van Houtte: Int. J. Plasticty Vol. 17 (2001), p.807.

Google Scholar

[11] P.R. Dawson, D.E. Boyce, R. Hale and J.P. Dukrot: Int. J. Plasticty Vol. 21 (2005), p.251.

Google Scholar

[12] S. He, A. Van Bael and P. Van Houtte: Materials Science Forum Vol. 495-497 (2005) p.1573.

DOI: 10.4028/www.scientific.net/msf.495-497.1573

Google Scholar

[13] E. Nes: Progr. Mater. Sci. Vol. 41 (1997) p.129.

Google Scholar

[14] A. Van Bael, S. He, S. Li and P. Van Houtte, The simulation of cold metal deformation using convex plastic potentials calculated from texture data, VII International Conference on Computational Plasticity (COMPLAS 2003), E. Oñate and D. R. J. Owen (Eds), CIMNE, Barcelona, (2003).

Google Scholar

[15] S. Ristic, S. He, A. Van Bael, P. Van Houtte: Materials Science Forum Vol. 495-497 (2005) p.1535.

DOI: 10.4028/www.scientific.net/msf.495-497.1535

Google Scholar