Multiscale Modelling of Plastic Deformation of Polycrystals: Implementation of Texture-Based Anisotropy in Engineering Applications (FE Codes for Forming, Prediction of Forming Limit Curves)

Abstract:

Article Preview

Finite element models for metal forming are used to design and optimise industrial forming processes. The limit strain in sheet metal forming can be predicted for monotonic loading or strain paths with changes. Models like these should be as accurate as possible in order to be useful, and hence take the texture, microstructure and substructure (dislocation patterns) into account. To achieve this, a hierarchical type of modelling is proposed in order to maintain the balance between calculation speed (required for engineering applications) and accuracy. In that case, FE models to be used at the engineering length scale work with an analytical constitutive model, the parameters of which are identified using results of multilevel models (meso-scale with an homogenisation procedure). The analytical model to be used at macro-scale will be discussed, as well as the identifications procedure. The later make use of meso-scale models. Finally an example will be given (formability of a sheet material).

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

3454-3459

Citation:

P. van Houtte et al., "Multiscale Modelling of Plastic Deformation of Polycrystals: Implementation of Texture-Based Anisotropy in Engineering Applications (FE Codes for Forming, Prediction of Forming Limit Curves)", Materials Science Forum, Vols. 539-543, pp. 3454-3459, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] P. Van Houtte, S. Li, M. Seefeldt and L. Delannay: Int. J. Plasticty Vol. 21 (2005) p.589.

[2] R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., Vol. 41 (1993) p.2611.

[3] P. Erieau, C. Rey, Int. J. Plasticity, Vol. 20, (2004) p.1763.

[4] B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, E. Aernoudt: Acta Mater. Vol. 49 (2001), p.1607.

[5] P.R. Dawson, S.R. MacEwen and P.D. Wu: International Materials Reviews, Vol. 48 (2003), p.86.

[6] A.M. Habraken and L. Duchêne: Int. J. Plasticity, Vol. 20 (2004), p.1525.

[7] Raabe D, Roters F, Intern. J. Plasticity, VoL 20 (2004), p.339.

[8] P. Van Houtte: Int. J. Plasticity Vol. 10 (1994), p.719.

[9] P. Van Houtte and A. Van Bael: Int. J. Plasticty Vol. 20 (2004), p.1505.

[10] P. Van Houtte: Int. J. Plasticty Vol. 17 (2001), p.807.

[11] P.R. Dawson, D.E. Boyce, R. Hale and J.P. Dukrot: Int. J. Plasticty Vol. 21 (2005), p.251.

[12] S. He, A. Van Bael and P. Van Houtte: Materials Science Forum Vol. 495-497 (2005) p.1573.

DOI: https://doi.org/10.4028/www.scientific.net/msf.495-497.1573

[13] E. Nes: Progr. Mater. Sci. Vol. 41 (1997) p.129.

[14] A. Van Bael, S. He, S. Li and P. Van Houtte, The simulation of cold metal deformation using convex plastic potentials calculated from texture data, VII International Conference on Computational Plasticity (COMPLAS 2003), E. Oñate and D. R. J. Owen (Eds), CIMNE, Barcelona, (2003).

[15] S. Ristic, S. He, A. Van Bael, P. Van Houtte: Materials Science Forum Vol. 495-497 (2005) p.1535.

DOI: https://doi.org/10.4028/www.scientific.net/msf.495-497.1535

Fetching data from Crossref.
This may take some time to load.