Progress in Light Metals, Aerospace Materials and Superconductors

Paper Title Page

Authors: Yan Dong Yu, Cai Xia Li
Abstract: The finite element numerical simulation for the formability of magnesium alloy AZ31B sheets with thickness of 0.8mm and diameter of 140mm has been proceeded to investigate the formability using the current finite element software. Under the condition with blank holder force of 8KN and deep drawing speed of 0.3mm/s at 200, the sytematic analysis and prediction of the thickness change and the forming rule for thesimulation process of the blank has been carried out. Under the same parameter, the drawing parts by deep drawing with a hydaulic machine were obtained and the thickness tested. It has been found that thickness change rules and the forming rules of the experimental results were in agreement with the numerical simulations.
Authors: Q.G. Xie, Ping Yang, F.E. Cui
Abstract: Cellular precipitation is reduced greatly by deformation at all ageing temperatures. Precipitates within twins are often nodular and sluggish to grow, whereas dislocations created by basal slip in matrices promote fast growth of plate-like precipitates. Recrystallization was observed concurrent with precipitation above 310°C. Effective nucleation sites for recrystallization are positions connecting twins and grain boundaries or the intersections of twin variants.
Authors: Ping Yang, Li Meng, Q.G. Xie, F.E. Cui
Abstract: Basal slip and tension twinning are dominant deformation mechanisms of polycrystalline magnesium at low temperature. However, fracture originates mainly from compression twins or shear bands developed from compression twins. This work compared firstly the morphological difference of two types of twins. Then, the dependence of different deformation mechanisms on initial orientations is computed by Schmid factor analysis and compared with measured matrix orientations of twins. Finally, orientation relationships of compression twins with matrices are determined using EBSD technique and compared with theoretical value.
Authors: Wei Qiu, En Hou Han, Lu Liu
Abstract: Addition of RE elements to Al-containing Mg alloys can improve properties of Mg alloys at elevated temperatures. In the present investigation, hot-extruded AZ31+x%Nd. (x=0.1,0.3,0.6and1.0 wt%) wrought Mg alloy were prepared .The effects of Nd on microstructures and mechanical properties at room temperature of new alloy were investigated. The investigation found that Nd can bring about two kind of precipitation phases . One is AlNd phase, the other is AlNdMn phase, which were identified as Al11Nd3 and Al8NdMn4 by X-ray diffraction and TEM.
Authors: Bao Yi Yu, Yu Ying Li, Hong Wu Song, Xiao Guang Yuan, Zhen Liu
Abstract: Microstructures and tensile properties of Mg-8Zn-4Al-xCax=0.6wt.%, 1.0wt.%, 1.3wt.%, named as alloy 1#, 2# and 3# , respectively)extruded magnesium alloy tube were studied at room and elevated temperature. The results show that Ca can increase tensile strength of the alloy at 150 and 200°C significantly. At the temperature of 200°C, alloy 3# achieved optimal tensile properties, of which the ultimate tensile strength, the yield strength and the elongation were 165.8MPa, 108.7Mpa and 41.5% respectively. Compared with the properties of as cast ZAC8506 Magnesium alloy, it is shown that the tensile properties of alloy 3# are much higher than that of ZAC8506 at both room temperature and 150°C. Alloy 3# also gets better tensile performance than AZ91D extruded tube produced in the same way at the temperature of 200°C Mg2Al3 and Ca2Mg5Zn13 phases are found in the microstructure which should contribute to the higher performance of alloy 3# at elevated temperature
Authors: Da Quan Li, Qu Dong Wang, Wen Jiang Ding
Abstract: Microstructure and tensile properties of AZ31 rolled at different temperatures were characterized. Rolling of extruded AZ31 plates was carried out at room temperature, 573K, 623K and 673K. Cold rolling of extruded AZ31 plates was difficult due to the poor formability at room temperature. And deformation twinning plays an important role in rolling of AZ31 alloy at room temperature. The microstructural analysis showed that the nucleation of dynamic recrystallization (DRX) occurred at 573K, DRX was almost completed at 623K and grain growth was determined at 673K. The ultimate tensile strength (UTS) as large as 377MPa was achieved after rolled at 573K. And the anisotropy in strength was obviously examined due to the rolling texture. The anisotropy reduced as rolling temperature increasing from 573K to 673K and this may be attributed to the completion of DRX.
Authors: Li Jin, Dong Liang Lin, Xiao Qin Zeng, Da Li Mao, Wen Jiang Ding
Abstract: The effect of second-phase particles on the grain refinement of AZ61 and AZ91 Mg-Al-Zn alloys with different volume fractions of β-Mg17Al12 phase particles during equal channel angular extrusion (ECAE) has been investigated. The microstructure were observed by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that grain refinement was enhanced by second phase particles at initial stage of ECAE. And finer grains with the high angle grain boundaries (HAGBs) and disperse second-phase particles could be obtained in AZ61 and AZ91 after 8 passes of ECAE.
Authors: Jin Bao Lin, Qu Dong Wang, Li Ming Peng, Yang Zhou, Wen Jiang Ding
Abstract: Microstructure and mechanical properties of Mg-6.0wt%Zn-0.5wt%Zr (ZK60) alloy were studied as a function of cooling rate. The temperature field and cooling rate during the casting process were investigated by use of finite element analysis (FEA) simulation. The results showed that the microstructure was refined and the eutectic phase distributed much uniformly with the increase of cooling rate. The increase of yield strength, ultimate strength and elongation can be ascribed to the strengthening effect of fine grain. Relationship between grain size and yield strength is consistent with the Hall-Petch formalism: 1/ 2 80.37 132.56 − = + d y σ .
Authors: Yong Liu, Guang Yin Yuan, Chen Lu, Wen Jiang Ding
Abstract: The microstructure and mechanical properties of Mg95.9Zn3.5Gd0.6 and Mg94.4Zn3.5Gd0.6Cu1.5 alloys reinforced by icosahedral quasicrystalline phase (I-phase) and Laves phase has been studied after extrusion at 573K. Extrusion can significantly refined the I-phase and Laves phase, and the strengthening effect of I-phase and Laves phase has been analyzed. Large volume of icosahedral phase in Mg95.9Zn3.5Gd0.6 has important role in its high UTS and elongation due to strong bonding effect at the I-phase/matrix interface for low interface energy. The Laves phase with cubic topological and close-packed structure in Mg94.4Zn3.5Gd0.6Cu1.5 alloy result in the higher heat resistance at elevated temperatures.
Authors: Ying Xin Wang, Xiao Qin Zeng, Wen Jiang Ding, Alan A. Luo, Anil K. Sachdev
Abstract: Uniaxial hot compression tests were performed at constant temperature (T) and strain rate (ε& ) in the ranges of 200-500 °C at an interval of 50 °C and 0.001-20 s-1. The flow stress data were used to develop the extrusion limit diagram for AZ31 and AM30 magnesium tubes. The extrusion limit diagram shows a wide region available for extruding AZ31 and AM30 seamless tubes, and comparison of the two extrusion limit diagrams shows that, the extrudability of AM30 alloy is better than that of AZ31 alloy. Actual extrusion trials validated the predicted temperature rise limit curve corresponding to the occurrence of surface cracking during the extrusion process. Magnesium tubes were successfully extruded according to the safe regions identified by the extrusion limit diagram.

Showing 61 to 70 of 459 Paper Titles