Correlation between Boundary Energy and Grain Boundary Character Distribution in Fe-Based Polycrystals

Abstract:

Article Preview

The grain boundary energy anisotropy in BCC Fe-based polycrystals is considered. The correlation between the energy in BCC random grain boundaries and the distribution of grain boundary planes in the bulk was examined with a special attention on the presence of low index (low surface energy) planes in the internal surfaces. For a BCC structure, {100} and {110} planes are known to be the lowest energy planes dominating the equilibrium crystal shapes. Experimental evidences demonstrated that these planes were predominant in the texture of surfaces controlled by surface energy [2]. Moreover, the relation between the grain boundary character distribution and the crystallographic dependence on the grain boundary energy in the bulk after annealing treatment was studied. The grain character boundary distribution (GCBD) was calculated using the crystallographic information obtained from OIM-EBSD maps from samples showing columnar grains. Preliminary results showed no particular distribution trend within the standard stereographic triangle (001-101-111).

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Edited by:

S.-J.L. Kang, M.Y. Huh, N.M. Hwang, H. Homma, K. Ushioda and Y. Ikuhara

Pages:

879-884

DOI:

10.4028/www.scientific.net/MSF.558-559.879

Citation:

P. Gobernado et al., "Correlation between Boundary Energy and Grain Boundary Character Distribution in Fe-Based Polycrystals", Materials Science Forum, Vols. 558-559, pp. 879-884, 2007

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.