Organic Materials for Large Area Electronics

Article Preview

Abstract:

Organic materials have been developed to operate as the active semiconductor in a wide range of semiconductor devices, including light-emitting diodes, LEDs, field-effect transistors, FETs, and photovoltaic diodes, PVs. The ability to process these materials as thin films over large areas makes possible a range of applications, currently in displays, as LEDs and as active matrix FET arrays, and solar cells. This article reviews developments in semiconductor physics of these materials and in their application in semiconductor devices

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-179

Citation:

Online since:

December 2008

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. W. Tang, S. A. VanSlyke: Appl. Phys. Lett. Vol. 51 (1987) pp.913-15.

Google Scholar

[2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes: Nature Vol. 347 (1990) pp.539-41.

DOI: 10.1038/347539a0

Google Scholar

[3] M. Pope, C. E. Swenberg: Electronic Processes in Organic Crystals and Polymers, Oxford University Press, New York, (1999).

Google Scholar

[4] M. Pope, H. Kallmann, P. Magnante: J. Chem. Phys. Vol. 38 (1963) pp.2042-43.

Google Scholar

[5] W. Helfrich, W. G. Schneider: Phys. Rev. Lett. Vol. 14 (1965) pp.229-31.

Google Scholar

[6] P. M. Borsenberger, D. S. Weiss: Organic Photoreceptors for Imaging Systems, M. Dekker, New York, (1998).

Google Scholar

[7] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid: Phys. Rev. Lett. Vol. 39 (1977) pp.1098-101.

DOI: 10.1103/physrevlett.39.1098

Google Scholar

[8] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes: Appl. Phys. Lett. Vol. 68 (1996) pp.3120-22.

Google Scholar

[9] N. Karl, in R. Farchioni, G. Grosso (Eds. ), Organic Electronic Materials. Springer, Berlin, 2001, pp.283-326.

Google Scholar

[10] A. J. Heeger, S. Kivelson, J. R. Schrieffer, W. -P. Su: Rev. Mod. Phys. Vol. 60 (1988) pp.781-850.

DOI: 10.1103/revmodphys.60.781

Google Scholar

[11] J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin: Journal of the American Chemical Society Vol. 123 (2001) pp.9482-83.

Google Scholar

[12] S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey: Applied Physics Letters Vol. 91 (2007).

Google Scholar

[13] H. Sirringhaus, T. Shimoda: Materials Research Society Bulletin, Vol. 28, No. 11, November Vol. (2003).

Google Scholar

[14] C. W. Sele, T. von Werne, R. H. Friend, H. Sirringhaus: Advanced Materials Vol. 17 (2005) p.997-+.

Google Scholar

[15] M. S. Arnold, G. J. McGraw, S. R. Forrest, R. R. Lunt: Applied Physics Letters Vol. 92 (2008).

Google Scholar

[16] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck: Nature Vol. 397 (1999) pp.121-27.

DOI: 10.1038/16393

Google Scholar

[17] W. R. Salaneck, K. Seki, A. Kahn, J. J. Pireaux (Eds. ), Conjugated polymer and molecular interfaces: Science and technology for photonic and optoelectronic applications. Marcell Dekker, New York, (2002).

DOI: 10.1201/9780203910870

Google Scholar

[18] N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux, J. Schwartz, R. L. Johnson, A. Elschner: Applied Physics Letters Vol. 82 (2003) pp.70-72.

DOI: 10.1063/1.1532102

Google Scholar

[19] A. C. Morteani, A. S. Dhoot, J. S. Kim, C. Silva, N. C. Greenham, C. Murphy, E. Moons, S. Cina, J. H. Burroughes, R. H. Friend: Advanced Materials Vol. 15 (2003) p.1708-+.

DOI: 10.1002/adma.200305618

Google Scholar

[20] J. Clark, C. Silva, R. H. Friend, F. C. Spano: Physical Review Letters Vol. 98 (2007).

Google Scholar

[21] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest: Applied Physics Letters Vol. 75 (1999) pp.4-6.

Google Scholar

[22] www. novaled. com.

Google Scholar

[23] S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel: Advanced Materials Vol. 14 (2002) p.975-+.

DOI: 10.1002/1521-4095(20020705)14:13/14<975::aid-adma975>3.0.co;2-d

Google Scholar

[24] M. Wohlgenannt, Z. V. Vardeny: Journal of Physics-Condensed Matter Vol. 15 (2003) p. R83-R107.

DOI: 10.1088/0953-8984/15/3/202

Google Scholar

[25] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Köhler, R. H. Friend: Nature Vol. 413 (2001) pp.828-31.

Google Scholar

[26] E. A. Meulenkamp, R. van Aar, J. J. A. M. Bastiaansen, A. J. M. van den Biggelaar, H. Börner, K. Brunner, M. Büchel, A. van Dijken, N. M. M. Kiggen, M. Kilitziraki, M. M. de Kok, B. M. W. Langeveld, M. P. H. Ligter, S. I. E. Vulto, P. van de Weijer, S. H. P. M. de Winter: Proceedings of the SPIE Photonics Europe meeting, Strasbourg, France, April 2004 Vol. (2004).

DOI: 10.1117/12.549458

Google Scholar

[27] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos: Physical Review B Vol. 68 (2003) p. art. no. -075211.

Google Scholar

[28] J. L. Bredas, D. Beljonne, V. Coropceanu, J. Cornil: Chemical Reviews Vol. 104 (2004) pp.4971-5003.

Google Scholar

[29] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo: Applied Physics Letters Vol. 78 (2001) pp.410-12.

DOI: 10.1063/1.1343849

Google Scholar

[30] G. Schwartz, K. Fehse, M. Pfeiffer, K. Walzer, K. Leo: Applied Physics Letters Vol. 89 (2006).

Google Scholar

[31] G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo: Advanced Materials Vol. 19 (2007) p.3672-+.

Google Scholar

[32] Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, S. R. Forrest: Nature Vol. 440 (2006) pp.908-12.

Google Scholar

[33] F. Hide, M. A. DiazGarcia, B. J. Schwartz, M. R. Andersson, Q. B. Pei, A. J. Heeger: Science Vol. 273 (1996) pp.1833-36.

Google Scholar

[34] N. Tessler, G. J. Denton, R. H. Friend: Nature Vol. 382 (1996) pp.695-97.

Google Scholar

[35] I. D. W. Samuel, G. A. Turnbull: Chemical Reviews Vol. 107 (2007) pp.1272-95.

Google Scholar

[36] N. Tessler, N. T. Harrison, R. H. Friend: Adv. Mater. Vol. 10 (1998) pp.64-68.

Google Scholar

[37] M. A. Baldo, R. J. Holmes, S. R. Forrest: Physical Review B Vol. 66 (2002) p. art. no. - 035321.

Google Scholar

[38] C. W. Tang: Appl. Phys. Lett. Vol. 48 (1986) pp.183-85.

Google Scholar

[39] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes: Nature Vol. 376 (1995) pp.498-500.

DOI: 10.1038/376498a0

Google Scholar

[40] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger: Science Vol. 270 (1995) pp.1789-91.

Google Scholar

[41] B. A. Gregg: Journal of Physical Chemistry B Vol. 107 (2003) pp.4688-98.

Google Scholar

[42] S. Gunes, H. Neugebauer, N. S. Sariciftci: Chemical Reviews Vol. 107 (2007) pp.1324-38.

Google Scholar

[43] A. C. Arias, J. D. MacKenzie, R. Stevenson, J. J. M. Halls, M. Inbasekaran, E. P. Woo, D. Richards, R. H. Friend: Macromolecules Vol. 34 (2001) pp.6005-13.

DOI: 10.1021/ma010240e

Google Scholar

[44] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, L. McCulloch, J. Nelson, D. D. C. Bradley, J. R. Durrant: Journal of the American Chemical Society Vol. 130 (2008) pp.3030-42.

DOI: 10.1021/ja076568q

Google Scholar

[45] J. H. Burroughes, C. A. Jones, R. H. Friend: Nature Vol. 335 (1988) pp.137-41.

Google Scholar

[46] C. D. Dimitrakopoulos, P. R. L. Malenfant: Advanced Materials Vol. 14 (2002) pp.99-117.

Google Scholar

[47] J. Zaumseil, R. H. Friend, H. Sirringhaus: Nature Materials Vol. 5 (2006) pp.69-74.

Google Scholar

[48] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo: Science Vol. 290 (2000) pp.2123-36.

DOI: 10.1126/science.290.5499.2123

Google Scholar

[49] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. M. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney: Nature Materials Vol. 5 (2006) pp.328-33.

DOI: 10.1038/nmat1612

Google Scholar

[50] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. LangeveldVoss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw: Nature Vol. 401 (1999) pp.685-88.

DOI: 10.1038/44359

Google Scholar

[51] J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, S. M. Khaffaf: Advanced Functional Materials Vol. 13 (2003) pp.199-204.

DOI: 10.1002/adfm.200390030

Google Scholar

[52] M. H. Yoon, H. Yan, A. Facchetti, T. J. Marks: Journal of the American Chemical Society Vol. 127 (2005) pp.10388-95.

Google Scholar

[53] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend: Nature Vol. 434 (2005) pp.194-99.

Google Scholar

[54] J. S. Swensen, C. Soci, A. J. Heeger: Applied Physics Letters Vol. 87 (2005).

Google Scholar

[55] www. polymervision. com.

Google Scholar

[56] www. plasticlogic. com.

Google Scholar

[57] J. Zaumseil, C. R. McNeill, M. Bird, D. L. Smith, P. P. Ruden, M. Roberts, M. J. McKiernan, R. H. Friend, H. Sirringhaus: Journal of Applied Physics Vol. 103 (2008).

DOI: 10.1063/1.2894723

Google Scholar