Damaged Layer Analysis for AFM-Based Mechanical Modifications on (100) Si Surface

Article Preview

Abstract:

Micro/Nanofabrication of silicon substrate based on the atomic force microscope (AFM) followed by wet chemical etching was demonstrated. A specially designed cantilever with a diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional Si or Si3N4-based micro cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip, which was found to be a low crystallized amorphous silicon layer. Hence these sequential processes, called tribo nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool. According to our results, it has been clearly known that the damaged layer withstands against aqueous potassium hydroxide solution, while it dissolves in diluted hydro fluoric (DHF) solution.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 626-627)

Pages:

29-34

Citation:

Online since:

August 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Schuster and V. Kirchner: Science Vol. 289 (2000), p.98.

Google Scholar

[2] J. W. Park, E. S. Lee and Y. H. Moon: Microsys. Technol. Vol. 9 (2002), p.61.

Google Scholar

[3] K. Ashida, N. Morita and Y. Yoshida: JSME Int. J. Ser. C Vol. 44(1) (2001), p.244.

Google Scholar

[4] R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin: Science Vol. 283 (1999), p.661.

Google Scholar

[5] X. Liu, L. Fu, S. Hong, V. P. Dravid and C. A. Mirkin: Adv. Mater. Vol. 14(3) (2002), p.231.

Google Scholar

[6] J. H. Bae, T. Ono and M. Esashi: Appl. Phys. Lett. Vol. 82(5) (2003), p.814.

Google Scholar

[7] D. M. Kolb, R. Ullmann and T. Will: Science Vol. 275 (1997), p.1097.

Google Scholar

[8] E. S. Snow and P. M. Campbell: Science Vol. 270 (1995), p.1639.

Google Scholar

[9] K. Wilder and C. F. Quate: Appl. Phys. Lett. Vol. 73(17) (1998), p.2527.

Google Scholar

[10] F. S. S. Chien, J. W. Chang, S. W. Lin, Y. C. Chou, T. T. Chen, S. Gwo, T. S. Chao and W. F. Hsieh: Appl. Phys. Lett. Vol. 76(3) (2000), p.360.

Google Scholar

[11] J. W. Park, N. Kawasegi, N. Morita and D. W. Lee: Appl. Phys. Lett. Vol. 85(10) (2004), p.1766.

Google Scholar

[12] N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama and K. Ashida: Nanotechnology Vol. 16 (2005), p.1411.

DOI: 10.1088/0957-4484/16/8/073

Google Scholar

[13] R. Klauser, I. H. Hong, H. J. Su, T. T. Chen, S. Gwo, S. C. Wang, T. J. Chuang and V. A. Gritsenko: Appl. Phys. Lett. Vol. 79(19) (2001), p.3143.

DOI: 10.1063/1.1415415

Google Scholar

[14] H. Seidel, L. Csepregi, A. Heuberger and H. Baumgärtel: J. of Electrochem. Soc. Vol. 137(11) (1990), p.3612.

Google Scholar