Damaged Layer Analysis for AFM-Based Mechanical Modifications on (100) Si Surface

Abstract:

Article Preview

Micro/Nanofabrication of silicon substrate based on the atomic force microscope (AFM) followed by wet chemical etching was demonstrated. A specially designed cantilever with a diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional Si or Si3N4-based micro cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip, which was found to be a low crystallized amorphous silicon layer. Hence these sequential processes, called tribo nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool. According to our results, it has been clearly known that the damaged layer withstands against aqueous potassium hydroxide solution, while it dissolves in diluted hydro fluoric (DHF) solution.

Info:

Periodical:

Materials Science Forum (Volumes 626-627)

Edited by:

Dongming Guo, Jun Wang, Zhenyuan Jia, Renke Kang, Hang Gao, and Xuyue Wang

Pages:

29-34

DOI:

10.4028/www.scientific.net/MSF.626-627.29

Citation:

J. W. Park and N. H. Kim, "Damaged Layer Analysis for AFM-Based Mechanical Modifications on (100) Si Surface", Materials Science Forum, Vols. 626-627, pp. 29-34, 2009

Online since:

August 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.