Investigation on the Effect of Test Parameters on Small Punch Creep Tests by Finite Element Method

Article Preview

Abstract:

The small punch creep (SP-C) test technique is a new method which is applied to evaluate the high temperature creep properties of materials by using miniature specimen. In the present paper, the Finite Element Method (FEM) is employed to simulate the SP-C test in order to investigate the effects of test parameters on testing results of the SP-C test. In this attempt, we perform systematic numerical simulations of SP-C tests by changing friction coefficient, specimen thickness, the diameter of punch ball and the inner diameter of lower die, and discuss the effects of the variation of test parameters on test results in detail. The resulting regression equations for assessing the effects of testing parameters on test results are obtained. It is found that the test results are influenced significantly by the specimen thickness, the diameter of punch ball and the inner diameter of lower die. However, the effects of friction coefficient on the results of the SP-C test can be neglected.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Pages:

393-398

Citation:

Online since:

October 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kameda, J. and Buck, O. Mater Sci Eng, Vol. 83(1986), p.29.

Google Scholar

[2] Misawa, T., Adachi, T. Saito, M. and Hamaguchi, Y. J Nucl Mater, Vol. 150(1987), p.194.

Google Scholar

[3] Joo, Y. -H., Hashida, T., and Takahashi, H. J Testing Eval, Vol. 20(1992), p.6.

Google Scholar

[4] Lucas G.E. Met Trans 21A, 1998, p.1105.

Google Scholar

[5] Song S. -H., Foulkner R.G., Flewitt P.E.J., Smith R.F., Marmy P., Victoria M. J Nucl Mater, Vol. 280(2000), p.162.

Google Scholar

[6] Foulds J.R., Woytowitz P.J., Parnell T.K., Jewell C.W. J Testing Eval, Vol. 23(1995), p.3.

Google Scholar

[7] Mao X., Takahashi H., Kodaira T. Scr Metall, Vol. 25(1991), p.2487.

Google Scholar

[8] Dobes F. and Milicka K. Mater Sci Eng A, Vol. 336(2002), p.245.

Google Scholar

[9] Paker, J. D. and James, J. D. ASME, PVP-Vol. 279( 1994), p.167.

Google Scholar

[10] Komazaki, S., Hashida, T., Shoji, T. and Suzuki, K. J Testing Eval, Vol. 28(2000), p.249.

Google Scholar

[11] Saucedo-Munoz M. L., Komazaki, S., Takahashi T., Hashida, T. and Shoji T. J Mater Res, Vol. 17(2002), p. (1945).

Google Scholar

[12] Zhai P. C., Toshiyuki H., Shin-ichi K. and Zhang Q.J. J Testing Eval, vol. 32(2004), p.298.

Google Scholar

[13] Patrick E., Maurice P. W., Fereydoun L. and Michael J. C. Comput Mater Sci, Vol. 40(2007), p.33.

Google Scholar

[14] Xiang L., Zheng Y. Y., You Y. J. and Chen Y. X. Int J Pressure Vessels Piping, Vol. 84(2007), p.304.

Google Scholar