Microstructural Origin of Superior Compressive Ductility of a Nanocrystalline Metal

Article Preview

Abstract:

Ultra-large compressive plasticity at room temperature has recently been observed in electrodeposited nanocrystalline nickel (nc-Ni) under micro-scale compression (Pan, Kuwano, Fujita and Chen: Nano Lett. Vol. 7 (2007), p. 2108). With aid of a TEM sample preparation technique employing focused ion beam (FIB), TEM observations on deformed nc-Ni evidenced deformation-induced microstructural evolution of nc-Ni at a variety of strain levels: Whilst the deformation increases, substantial grain growth is uncovered in the nc-Ni. No apparent ex situ evidence of intragranular dislocation activities is found in the deformed sample. As thermal diffusion plays an insignificant role in the deformation in nc-Ni at room temperature (~0.17Tm), this premium plasticity is achieved in accommodation with the grain-boundary-mediated deformation, with assistance of extensive grain growth that is mainly driven by high stresses at steady plastic flow.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

73-84

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gleiter: Prog. Mater. Sci. Vol. 33 (1989), p.223.

Google Scholar

[2] A.H. Chokshi, A.K. Mukherjee and T.G. Langdon: Mat. Sci. Eng. R Vol 10 (1993), p.237.

Google Scholar

[3] J.R. Weertman, in: Nanostructured materials: processing, properties and applications, edited by C.C. Koch, Norwich (NY): William Andrews Publishing, (2002).

Google Scholar

[4] K.S. Kumar, H. Van Swygenhoven and S. Suresh: Acta Mater. Vol. 51 (2003), p.5743.

Google Scholar

[5] H. Van Swygenhoven and J.R. Weertman: Mater. Today Vol. 9 (2006), p.24.

Google Scholar

[6] M.W. Chen, E. Ma and K.J. Hemker, in: Nanomaterials Handbook, edited by Y. Gogotsi, Taylor & Francis Bocan Raton, FL (2006).

Google Scholar

[7] K.S. Kumar, S. Suresh, M.F. Chisholm, J.F. Horton and P. Wang: Acta Mater. Vol. 51 (2003), p.387.

Google Scholar

[8] K. Zhang, J.R. Weertman and J.A. Eastman: Appl. Phys. Lett. Vol. 87 (2005), 061921.

Google Scholar

[9] D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven and K.J. Hemker: Acta Mater. Vol. 54 (2006), p.2253.

DOI: 10.1016/j.actamat.2006.01.023

Google Scholar

[10] L. Lu, M.L. Sui and K. Lu: Science Vol. 287 (2000), p.1463.

Google Scholar

[11] Y.M. Wang, M.W. Chen, F.H. Zhou and E. Ma: Nature Vol. 419 (2002), p.912.

Google Scholar

[12] D. Pan, S. Kuwano, T. Fujita and M.W. Chen: Nano Lett. Vol. 7 (2007), p.2108.

Google Scholar

[13] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma and Y.T. Zhu: Adv. Mater. Vol. 18 (2006), p.2280.

Google Scholar

[14] E. Ma: JOM Vol. 58 No. 4 (2006), p.49.

Google Scholar

[15] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson and E. Ma: Acta Mater. Vol. 55 (2007), p.4041.

Google Scholar

[16] M.D. Uchic, D.M. Dimiduk, J.N. Florando and W.D. Nix: Science Vol. 305 (2004), p.986.

Google Scholar

[17] M.D. Uchic and D.M. Dimiduk: Mat. Sci. Eng. A Vol. 400-401 (2005), p.268.

Google Scholar

[18] S. Kuwano, T. Fujita, D. Pan, K. Wang and M.W. Chen, Mater. Trans. Vol. 49 (2008), p. (2091).

Google Scholar

[19] R.M. Langford: Microsc. Res. Tech. Vol. 69 (2006), p.538.

Google Scholar

[20] A. Cerezo, P.H. Clifton, M.J. Galtrey et al.: Mater Today Vol. 10 No. 12 (2007), p.36.

Google Scholar

[21] B.E. Schuster, Q. Wei, H. Zhang and K.T. Ramesh: Appl. Phys. Lett. Vol. 88 (2006), 103112.

Google Scholar

[22] D. Pan, T.G. Nieh and M.W. Chen: Appl. Phys. Lett. Vol. 88 (2006), 161922.

Google Scholar

[23] D. Pan and M.W. Chen, J. Mater. Res. Vol. 24 (2009), p.1466.

Google Scholar

[24] R. Maab, S. Van Petegem, D. Grolimund, H. Van Swygenhoven and M.D. Uchic: Appl. Phys. Lett. Vol. 91 (2007), 139109.

DOI: 10.1063/1.2784938

Google Scholar

[25] H. Bei, S. Shim, M.K. Miller, G.M. Pharr and E.P. George: Appl. Phys. Lett. Vol. 91 (2007), 111915.

Google Scholar

[26] J.C. Wurst and J.A. Nelson: J. Amer. Cera. Soc. Discussions and Notes (1972), p.109.

Google Scholar

[27] H.A. Kuhn, in: ASM Handbook: Mechanical Testing and Evaluation, ASM International, Materials Park, OH (2000).

Google Scholar

[28] Y.M. Wang and E. Ma: Acta Mater. Vol. 52 (2004), p.1699.

Google Scholar

[29] M. Legros, K.J. Hemker, A. Gouldstone, S. Suresh, R.M. Keller-Flaig and E. Arzt: Acta Mater. Vol. 50 (2002), p.3435.

DOI: 10.1016/s1359-6454(02)00157-x

Google Scholar

[30] Z. Budrovic, H. Van Swygenhoven and P.M. Derlet: Science Vol. 304 (2004), p.273.

Google Scholar

[31] G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson and R.W. Armstrong: Scr. Metall. Vol. 20 (1986), p.93.

Google Scholar

[32] J.G. Byrne, in Recovery, recrystallization and grain growth, Macmillan, New York, NY (1965).

Google Scholar

[33] J. Schiotz, F.D. Di Tolla and K.W. Jacobsen: Nature Vol. 391 (1998), p.561.

Google Scholar

[34] I.A. Ovid'ko, C.S. Pande and R.A. Masumura, in: Nanomaterials Handbook, edited by Y. Gogotsi, Taylor & Francis/CRC Press, Boca Raton, FL (2006).

Google Scholar

[35] J. Schiotz and K.W. Jacobsen: Science Vol. 301 (2003), p.1357.

Google Scholar

[36] H. Van Swygenhoven and P.M. Derlet: Phys. Rev. B Vol. 64 (2001), 224105.

Google Scholar

[37] H. Van Swygenhoven, M. Spacer and A. Caro: Acta Mater. Vol. 47 (1999), p.3117.

Google Scholar

[38] H. Van Swygenhoven, D. Farkas and A. Caro: Phy. Rev. B Vol. 62 (2000), p.831.

Google Scholar

[39] J.R. Rice: J. Mech. Phys. Solids Vol. 40 (1992), p.239.

Google Scholar

[40] N. Wang, Z. Wang, K.T. Aust and U. Erb: Mat. Sci. Eng. A Vol. 237 (1997), p.150.

Google Scholar

[41] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee and H. Gleiter: Nature Mater. Vol. 3 (2004), p.43.

Google Scholar

[42] M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang and X.M. Cheng: Science Vol. 300 (2003), p.1275.

Google Scholar