Crack Blunting through Lattice Dislocation Slip in Nanocrystalline and Ultrafine-Grained Materials

Article Preview

Abstract:

The grain size effect on blunting of cracks in nanocrystalline and ultrafine-grained materials (UFG) is theoretically described. Within our description, lattice dislocations emitted from cracks are stopped at grain boundaries. The stress fields of these dislocations suppress further dislocation emission from cracks in nanocrystalline and UFG materials, and the suppression depends on grain size. The dependences of the number of dislocations emitted by a crack on grain size (ranging from 10 to 300 nm) in Cu and 3C-SiC (the cubic phase of silicon carbide) are calculated which characterize the grain size effect on crack blunting that crucially influences ductility of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

55-62

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Kumar, S. Suresh and H. Van Swygenhoven: Acta Mater. Vol. 51 (2003), p.5743.

Google Scholar

[2] G. -D. Zhan, J.D. Kuntz and A.K. Mukherjee: MRS Bull. Vol. 29 (2004), p.22.

Google Scholar

[3] D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee and H. Gleiter: Acta Mater. Vol. 53 (2005), p.1.

Google Scholar

[4] B.Q. Han, E. Lavernia and F.A. Mohamed: Rev. Adv. Mater. Sci. Vol. 9 (2005), p.1.

Google Scholar

[5] I.A. Ovid'ko: Rev. Adv. Mater. Sci. Vol. 10 (2005), p.89.

Google Scholar

[6] I.A. Ovid'ko: Int. Mater. Rev. Vol. 50 (2005), p.65.

Google Scholar

[7] M.A. Meyers, A. Mishra and D.J. Benson: Progr. Mater. Sci. Vol. 51 (2006), p.427.

Google Scholar

[8] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson and E. Ma: Acta Mater. Vol. 55 (2007), p.4041.

Google Scholar

[9] R.B. Figueiredo, M. Kawasaki and T.G. Langdon: Rev. Adv. Mater. Sci. Vol. 19 (2009), p.1.

Google Scholar

[10] G.J. Weng: Rev. Adv. Mater. Sci. Vol. 19 (2009), p.41.

Google Scholar

[11] C.C. Koch, I.A. Ovid'ko, S. Seal and S. Veprek: Structural �anocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007).

Google Scholar

[12] F. Wakai, S. Sakagachi and Y. Matsuno: Adv. Cer. Mater. Vol. 1 (1986), p.259.

Google Scholar

[13] F. Wakai and H. Kato: Adv. Cer. Mater. Vol. 3 (1988), p.71.

Google Scholar

[14] N. Kondo, F. Wakai, T. Nishioka and A. Yamakawa: J. Mater. Sci. Lett. Vol. 14 (1995), p.1369.

Google Scholar

[15] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe: J. Mater. Res. Vol. 17 (2002), p.5.

Google Scholar

[16] R.Z. Valiev: Nature Mater. Vol. 3 (2004), p.511.

Google Scholar

[17] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita and T.G. Langdon: Appl. Phys. Lett. Vol. 89 (2006), art. 121906.

Google Scholar

[18] Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon and Y.T. Zhu: Adv. Mater. Vol. 18 (2006), p.2949.

DOI: 10.1002/adma.200601472

Google Scholar

[19] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Appl. Phys. Lett. Vol. 92 (2008), art. 081903.

DOI: 10.1063/1.2870014

Google Scholar

[20] X. Zhou, D.M. Hulbert, J.D. Kuntz, R.K. Sadangi, V. Shukla, B.H. Kear and A.K. Mukherjee: Mater. Sci. Eng. A Vol. 394 (2005), p.353.

Google Scholar

[21] G.D. Zhan, J.E. Garay and A.K. Mukherjee: Nano Lett. Vol. 5 (2005), p.2593.

Google Scholar

[22] X. Xu, T. Nishimura, N. Hirosaki, R.J. Xie, Y. Yamamoto and H. Tanaka: Acta Mater. Vol. 54 (2006), p.255.

Google Scholar

[23] A.K. Mukherjee: Mater. Sci. Eng. A Vol. 322 (2002), p.1.

Google Scholar

[24] A.A. Karimpoor, U. Erb, K.T. Aust and G. Palumbo: Scr. Mater. Vol. 49 (2003), p.651.

Google Scholar

[25] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Norton and P. Wang: Acta Mater. 51 (2003), p.387.

Google Scholar

[26] Y.M. Wang and E. Ma: Acta Mater. Vol. 52 (2004), p.1699.

Google Scholar

[27] K. -M. Youssef, R.O. Scattergood, K.L. Murty and C.C. Koch: Appl. Phys. Lett. Vol. 85 (2004), p.929; Scripta Mater. Vol. 54 (2006), p.251.

Google Scholar

[28] K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton and C.C. Koch: Appl. Phys. Lett. 87 (2005), art. 091904.

DOI: 10.1063/1.2034122

Google Scholar

[29] A.V. Sergueeva and A.K. Mukherjee: Rev. Adv. Mater. Sci. Vol. 13 (2006), p.1.

Google Scholar

[30] A.V. Sergueeva, N.A. Mara, N.A. Krasilnikov, R.Z. Valiev and A.K. Mukherjee: Philos. Mag. Vol. 86 (2006), p.5797.

Google Scholar

[31] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma and Y.T. Zhu: Adv. Mater. Vol. 18 (2006), p.2280.

Google Scholar

[32] H. Li and F. Ebrahimi: Appl. Phys. Lett. Vol. 84 (2004), p.4307.

Google Scholar

[33] H. Li and F. Ebrahimi: Adv. Mater. Vol. 17 (2005), p. (1969).

Google Scholar

[34] F. Ebrahimi, A.J. Liscano, D. Kong, Q. Zhai and H. Li: Rev. Adv. Mater. Sci. 13 (2006), p.33.

Google Scholar

[35] J.R. Rice and R.M. Thompson: Philos. Mag. Vol. 29 (1974), p.73.

Google Scholar

[36] J.R. Rice: J. Mech. Phys. Sol. Vol. 40 (1992), p.239.

Google Scholar

[37] G.E. Beltz, D.M. Lipkin and L.L. Fischer: Phys. Rev. Lett. Vol. 82 (1999), p.4468.

Google Scholar

[38] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Norton and P. Wang: Acta Mater. Vol. 51 (2003), p.387.

Google Scholar

[39] A. Latapie and D. Farkas: Phys. Rev. B Vol. 69 (2004), art. 134110.

Google Scholar

[40] I. -H. Lin and R. Thompson: Acta Metall. Vol. 34 (1986), p.187.

Google Scholar

[41] M. Jin, A.M. Minor, E.A. Stach and J.W. Morris Jr.: Acta Mater. Vol. 52 (2004), p.5381.

Google Scholar

[42] W.A. Soer, J. Th.M. De Hosson, A.M. Minor, J.W. Morris Jr. and E.A. Stach: Acta Mater. Vol. 52 (2004), p.5783.

Google Scholar

[43] J.T.M. De Hosson, W.A. Soer, A.M. Minor, Z. Shan, E.A. Stach, S.A. Syed Asif and O.L. Warren: J. Mater. Sci. Vol. 41 (2006), p.7704.

DOI: 10.1007/s10853-006-0472-2

Google Scholar

[44] K. Zhang, J.R. Weertman and J.A. Eastman: Appl. Phys. Lett. Vol. 85 (2004), p.5197; Vol. 87 (2005), art. 061921.

Google Scholar

[45] P.L. Gai, K. Zhang and J. Weertman: Scripta Mater. Vol. 56 (2007), p.25.

Google Scholar

[46] X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He and Y.T. Zhu: Appl. Phys. Lett. Vol. 83 (2003), p.5062.

Google Scholar

[47] X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhou and E.J. Lavernia: Phil. Mag. Vol. 83 (2003), p.3065.

Google Scholar

[48] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton and P. Wang: Acta Mater. Vol. (2003), p.387.

Google Scholar

[49] X.Z. Liao, F. Zhou, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev and D.V. Gunderov: Appl. Phys. Lett. Vol. 84 (2004), p.592.

Google Scholar

[50] Y.M. Wang, A.M. Hodge, J. Biener, A.V. Hamza, D.E. Barnes, K. Liu and T.G. Nieh: Appl. Phys. Lett. Vol. 86 (2005), art. 101915.

DOI: 10.1063/1.1883335

Google Scholar

[51] I.A. Ovid'ko, A.G. Sheinerman and E.C. Aifantis: Acta Mater. Vol. 56 (2008), p.2718.

Google Scholar

[52] M. Yu Gutkin, I.A. Ovid'ko and N.V. Skiba: Philos. Mag. Vol. 88 (2008), p.1137.

Google Scholar

[53] I.A. Ovid'ko and A.G. Sheinerman: Appl. Phys. Lett. Vol. 90 (2007), art. 171927; Acta Mater. Vol. 57 (2009), in press.

Google Scholar