Effects of Microalloying on the Mobility and Mechanical Response of Interfaces in Nanocrystalline Cu

Article Preview

Abstract:

We utilize a novel computational approach to model the problem of impurity segregation at grain boundaries in nanophase materials. It is based on a parallel MonteCarlo algorithm that places the impurities according to the local chemical potential for the species, following the thermodynamic driving force for segregation. This technique is combined with molecular dynamics techniques to study the role played by Fe impurities in the properties of nanocrystalline Cu grain boundary properties. The impurities were found to improve microstructural stability as studied by high temperature annealing simulations, and grain boundary cohesion as studied via spall resistance high stresses produced by simulated laser irradiation. Virtual tensile tests of samples with and without impurities revealed that the impurities did not affect the high flow stress typical of nanostructured material. We interpret these results in terms of impurity dragging and grain boundary sliding.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

21-30

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.H. Chen, L. Lu, Scripta Materialia 57 (2007) 133-136.

Google Scholar

[2] J. Chen, L. Lu, K. Lu, Scripta Materialia 54 (2006) 1913-(1918).

Google Scholar

[3] M. Dao, L. Lu, Y. F. Shen, S. Suresh, Acta Materialia 54 (2006) 5421-5432.

Google Scholar

[4] S. Cheng, E. Ma, Y. M. Wang, L. J. Kecskes, K. M. Youssef, C. C. Koch, U. P. Trociewitz, K. Han, Acta Materialia 53 (2005) 1521-1533.

DOI: 10.1016/j.actamat.2004.12.005

Google Scholar

[5] L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian, K. Lu, Science 304 (2004) 422-426.

Google Scholar

[6] T. D. Shen, C. C. Koch, Acta Materialia 44 (1996) 753-761.

Google Scholar

[7] C. C. Koch, T. D. Shen, C. Suryanarayana, J. Singh, F. H. Froes, C. Suryanarayana, J. Singh, F. H. Froes, Symposium on Processing and Properties of Nanocrystalline Materials. Materials Week 95 Cleveland, OH, (1996) 333-343.

Google Scholar

[8] V. Y. Gertsman, M. Hoffmann, H. Gleiter, R. Birringer, Acta Metallurgica et Materialia 42 (1994) 3539-3544.

DOI: 10.1016/0956-7151(94)90486-3

Google Scholar

[9] L. Lu, R. Schwaiger, Z. W. Shan, M. Dao, K. Lu, S. Suresh, Acta Materialia 53 (2005) 21692179.

Google Scholar

[10] N. Q. Vo, R. S. Averback, P. Bellon, S. Odunuga, A. Caro, Phys. Rev. B 77 (2004) 134108.

Google Scholar

[11] T. Haubold, Acta Metallurgica et Materialia 41 (1993) 1769-1772.

DOI: 10.1016/0956-7151(93)90196-y

Google Scholar

[12] T. Haubold, F. Boscherini, S. Pascarelli, S. Mobilio, H. Gleiter, Philosophical Magazine A 66 (1992) 591-596.

DOI: 10.1080/01418619208201577

Google Scholar

[13] S. C. Mehta, D. A. Smith, U. Erb, Materials Science And Engineering A 204 (1995) 227-232.

Google Scholar

[14] V. Y. Gertsman, R. Birringer, Scripta Metallurgica et Materialia 30 (1994) 577-581.

DOI: 10.1016/0956-716x(94)90432-4

Google Scholar

[15] M. Yamaguchi, M. Shiga, and H. Kaburaki, Science 307 (2005) 393-397.

Google Scholar

[16] R. Schweinfest, A. T. Paxton, and M. W. Finnis, Nature 432 (2004) 1008-1011.

Google Scholar

[17] R. Siegl, M. Yan, and V. Vitek, Modelling Simul. Mater. Sci. Eng. 5 (1997) 105-116.

Google Scholar

[18] J. Schiotz and K. W. Jacobsen , Science 301 (2003) 1357-1359.

Google Scholar

[19] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nature Mater. 3 (2004) 43-47.

Google Scholar

[20] G. Duscher,M. F. Chisholm, U. Alber, and M. Ruhle, Nature Mater. 3 (2004) 621-626.

Google Scholar

[21] R. Schweinfest, A. T. Paxton, and M. W. Finnis, Nature 432, 1008 (2004).

Google Scholar

[22] K. Lucke, and K. Detert, Acta Met. 5 (1957) 628-637.

Google Scholar

[23] W. J. Cahn, Acta Met. 10 (1962) 789-798.

Google Scholar

[24] K. Lucke, and H. P. Stuwe, Recovery and Recrystallization of metals (Interscience, New York, 1963).

Google Scholar

[25] X. Y. Liu, W. Xu, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72 (1998) 1578-1580.

Google Scholar

[26] M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, and S. Han, Mater. Res 20 (2005) 208-218.

Google Scholar

[27] D. Farkas and B. Hyde, Nano Letters 5 (2005) 2403-2407.

Google Scholar

[28] B. Sadigh, P. Erhart, A. Caro et al, to be published.

Google Scholar

[29] E. M. Lopasso, M. Caro, A. Caro, and P. E. A. Turchi, Phys. Rev. B 68 (2003) 214205.

Google Scholar

[30] A. Caro, P. E. A. Turchi, M. Caro, and E. M. Lopasso, J. Nucl. Mater. 336 (2005) 233-242.

Google Scholar

[31] A. Caro, M. Caro, E. M. Lopasso, P. E. A. Turchi, and D. Farkas, J. Nucl. Mater. 349 (2006) 317-326.

DOI: 10.1016/j.jnucmat.2005.11.004

Google Scholar

[32] M. Ludwig, D. Farkas, D. Pedraza, and S. Schmauder, Modelling Simul. Mater. Sci. Eng. 6 (1998) 19-28.

Google Scholar

[33] S. J. Plimpton, J Comp Phys 117 (1995) 1-19, and www. lammps. sandia. gov.

Google Scholar

[34] V. Y. Aristov, V. E. Fradkov, and L. S. Shvindlerman, Sov. Phys. Solid State 22 (1980) 18171824.

Google Scholar

[35] M. Upmanyu, R. W. Smith, and D. J. Srolovitz, Interface Sci. 6 (1998) 41-58.

Google Scholar

[36] H. Zhang, M. Upmanyu, and D. J. Srolovitz, Acta Mater. 53 (2005) 79-86.

Google Scholar

[37] L. A. Zepeda-Ruiz, G. H. Gilmer, B. Sadigh, A. Caro, T. Oppelstrup, and A. V. Hamza, Appl. Phys. Lett. 87 (2005) 231904.

DOI: 10.1063/1.2137871

Google Scholar

[38] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58 (1998) 11085.

Google Scholar

[39] H. V. Swygenhoven and P. Derlet, Phys. Rev. B 64 (2001) 224105.

Google Scholar

[40] D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, MRS Bulletin 31 (2006) 601-606.

DOI: 10.1557/mrs2006.156

Google Scholar

[41] J. Bernardini, C. Girardeaux, and A. Rolland, Defect and Diffusion Forum. 249 (2006) 161166.

Google Scholar

[42] A. Y. Lozovoi, A. T. Paxton, and M. W. Finnis, Phys. Rev. B. 74 (2006) 155416.

Google Scholar

[43] M. Samaras, P. Derlet, H. V. Swygenhoven, and M. Victoria, Phys. Rev. Lett. 88 (2002) 125505.

Google Scholar