Molecular Dynamics Simulations of Nanocrystalline Nickel and Copper Revealing Different Failure Model of FCC Metals

Article Preview

Abstract:

We have previously reported that the fracture behavior of nanocrystalline (NC) Ni is via the nucleation and coalescence of nano-voids at grain boundaries and triple junctions, resulting in intergranular failure mode. Here we show in large-scale molecular dynamics simulations that partial-dislocation-mediated plasticity is dominant in NC Cu with grain size as small as ~ 10 nanometers. The simulated results show that NC Cu can accommodate large plastic strains without cracking or creating damage in the grain interior or grain boundaries, revealing their intrinsic ductile properties compared with NC Ni. These results point out different failure mechanisms of the two face-centered-cubic (FCC) metals subject to uniaxial tensile loading. The insight gained in the computational experiments could explain the good plasticity found in NC Cu not seen in Ni so far.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

31-38

Citation:

Online since:

November 2009

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven, MRS Bull. 24, 44 (1999).

DOI: 10.1557/s088376940005154x

Google Scholar

[2] Y. T. Zhu and X. Z. Liao, Nature Mater. 3, 351 (2004).

Google Scholar

[3] K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51, 5743 (2003).

Google Scholar

[4] K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Acta Mater. 51, 387 (2003).

Google Scholar

[5] T. F. Dalla, H. Van Swygenhoven, M. Victoria. Acta Mater. 50, 3957 (2002).

Google Scholar

[6] H. Q. Li and F. Ebrahimi, Appl. Phys. Lett. 84, 4307 (2004).

Google Scholar

[7] H. Q. Li and F. Ebrahimi, Acta Mater. 54, 2877 (2006).

Google Scholar

[8] A. Rinaldi, P. Peralta, C. Friesen, K. Sieradzki, Acta Mater. 56, 511(2008).

Google Scholar

[9] K. M. Youssef, R. O. Scattergood, K. L. Murty, J. A. Horton, and C. C. Koch, Appl. Phys. Lett. 87, 091904 (2005).

DOI: 10.1063/1.2034122

Google Scholar

[10] Cheng S, Ma E, Wang YM, Acta Mater. 53, 1521 (2005).

Google Scholar

[11] Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, and S. X. Mao, Science 305, 654 (2004).

Google Scholar

[12] R. L. Coble, J. Appl. Phys. 34, 1679 (1963).

Google Scholar

[13] J. Schiøtz and K. W. Jacobsen, Science 301, 1357 (2003).

Google Scholar

[14] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nat. Mater. 1, 1 (2002).

Google Scholar

[15] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nat. Mater. 3, 43 (2004).

Google Scholar

[16] H. Van Swygenhoven and P. M. Derlet, Phys. Rev. B 64, 224105 (2001).

Google Scholar

[17] R. E. Rudd and J. F. Belak, Comput. Mater. Sci. 24, 148 (2002).

Google Scholar

[18] Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress. Phys. Rev. B 63, 224106 (2001).

Google Scholar

[19] Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

Google Scholar

[20] G. Z. Voronoi, J. Reine Angew. Math. 134, 199 (1908).

Google Scholar

[21] A. Cao, Y. Wei, Phys. Rev. B 76, 024113 (2007).

Google Scholar

[22] A.J. Cao, Y.G. Wei, and E. Ma, Phys. Rev. B 77, 195429 (2008).

Google Scholar

[23] A. G. Frøseth, H. Van Swygenhoven, and P. M. Derlet, Acta Mater. 52, 2259 (2004).

Google Scholar

[24] Y. J. Wei and L. Anand, J Mech. Phys. Solids 52, 2587 (2004).

Google Scholar

[25] V. Yamakov, E. Saether, D. R. Phillips, and E. H. Glaessgen, J Mech. Phys. Solids 54, 1899 (2006).

Google Scholar

[26] F. Ebrahimi, G.R. Bourne, M.S. Kelly, T.E. Matthews, Nanostructured Mater. 11, 343 (1999).

Google Scholar