Incommensurate and Commensurate Structural Modulation in Martensitic Phases of FSMA

Article Preview

Abstract:

Magnetic and structural properties in multifunctional FSMA (Ferromagnetic Shape Memory Alloys) belonging to Heusler family are frequently related to the occurrence of structural modulation in martensitic phases. The highest MFIS (Magnetic Field Induced Strain) effect has been observed in Ni-Mn-Ga alloys showing martensitic modulated structures. Depending on the composition, pressure and temperature conditions, this periodic structural distortion, consisting of shuffling of atomic layers along specific crystallographic directions, accompanies the martensitic transformation. Over the years, different modulated martensitic structures have been observed and classified depending upon the periodicity of corresponding superstructure (nM with n=3, 5, 6, 7, 12 etc). On the other hand, it has been demonstrated that in most cases such structural modulation is incommensurate and the crystal structure can be solved by applying superspace approach. The crystallographic representation of different modulated structures, obtained by structure refinement on powder diffraction data, suggests a unified description where every different “nM” periodicity can be straightforwardly represented. It will be presented an overview illustrating structural features of several displacive modulated martensitic lattices. For a specific Ni-Mn-Ga composition, the evolution of structural modulation upon temperature change will be illustrated.

You have full access to the following eBook

Info:

[1] Advances in Shape Memory Materials. Edited by V.A. Chernenko Vol 583 Materials Science Forum, Trans Tech Pubblications Inc., Switzerland, (2008).

Google Scholar

[2] L. Pareti, M. Solzi, F. Albertini, A. Paoluzi: Eur. Phys. J. B Vol. 32 (2003), p.303.

Google Scholar

[3] R. C. O'Handley: J. Appl. Phys. Vol. 83 (1998), p.3263.

Google Scholar

[4] F. Albertini, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Pareti, Z. Arnold, and G. Calestani: J. Appl. Phys. Vol. 89 (2001), p.5614.

DOI: 10.1063/1.1350630

Google Scholar

[5] F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P.A. Algarabel, M.R. Ibarra, and L. Righi: Appl. Phys. Lett. Vol. 81 (2002), p.4032.

DOI: 10.1063/1.1525071

Google Scholar

[6] P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak: Phil. Mag. Vol. B 49 (1984), p.295.

Google Scholar

[7] V.V. Martynov, V.V. Kokorin : Journ. de Phys. III Vol. 2 (1992), p.739.

Google Scholar

[8] V.V. Martynov : Journ. de Phys. IV Vol. C8 (1995), p.91.

Google Scholar

[9] J. Pons, V.A. Chernenko, R. Santamarta, E. Cesari: Acta Mater. Vol. 48 (2000), p.3027.

Google Scholar

[10] J. Pons , R. Santamarta, V.A. Chernenko, E. Cesari: Mater. Sci. Eng. A Vol. 438-440 (2006), p.931.

Google Scholar

[11] A. Sozinov, A. Likhachev, K. Ullakko: IEEE Trans. Magn. Vol. 38 (2002), p.2814.

Google Scholar

[12] P. Mullner, K Ullakko: Phys Stat Sol Vol. B202 (1998), p. R1.

Google Scholar

[13] L. Righi, F. Albertini, G. Calestani, L. Pareti, A. Paoluzi, C. Ritter, P.A. Algarabel, L. Morellon, M.R. Ibarra: J. Solid State Chem. Vol. 179 (2006), p.3525.

DOI: 10.1016/j.jssc.2006.07.005

Google Scholar

[14] L. Righi L, F. Albertini F, L. Pareti L, A. Paoluzi, G. Calestani: Acta Mater. Vol. 55 (2007), p.5237.

DOI: 10.1016/j.actamat.2007.05.040

Google Scholar

[15] L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter, F. Passaretti: Acta Mater. Vol. 56 (2008), p.4529.

DOI: 10.1016/j.actamat.2008.05.010

Google Scholar

[16] T. Janssen, A. Janner, A. Looijenga and P.M. Wolff: in International Tables for Crystallography Vol. C, Sect. 9. 8., Kluwer, Dordrecht, , (1992).

Google Scholar

[17] P.J. Brown , P.J. Crangle, J. Kanomata, T.M. Matsumoto, K.U. Neumann, B. Ouladdiaf, and K. R. A. Ziebeck: J. Phys. Cond. Matter Vol. 14 (2002), p.10159.

DOI: 10.1088/0953-8984/14/43/313

Google Scholar

[18] A. Zheludev, S.M. Shapiro, P. Wochner, L.E. Tanner: Phys. Rev B Vol. 54 (1996), p.15045.

Google Scholar

[19] Y. Ge, O. Söderberg, N. Lanska, A. Sozinov, K. Ullakko, V.K. Lindroos: J. Phys IV France Vol. 112 (2003), p.112.

DOI: 10.1051/jp4:20031031

Google Scholar

[20] Y Noda, S.M. Shapiro, G. Shirane,Y. Yamada, L.E. Tanner: Phys Rev B Vol. 42 (1990), p.10397.

Google Scholar

[21] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

Google Scholar

[22] U Gaizsch, M. Potschke, S. Roth, N. Mattern, B. Rellinghaus, L. Schultz: J Alloys Comp Vol. 443 (2007), p.99.

Google Scholar

[23] C. Jiang, Y. Muhammad, L. Deng, W. Wu, H. Xu : Acta Mater Vol. 52 (2004), p.2779.

Google Scholar

[24] S. Morito, K. Otsuka: Mater Sci Engign A Vol. 208 (1996), p.47.

Google Scholar

[25] L. Righi, P. Lázpita, J. Gutierrez, J.M. Barandiaran, V.A. Chernenko, G. Calestani : submitted to Scripta Mater. (2009).

Google Scholar