Structural Relation between the X-Phase and other Phases in Ni2MnGa

Article Preview

Abstract:

We have investigated stress and temperature dependences of the structure of the X-phase in Ni2MnGa to understand structural relation between the X-phase and other phases. Position and intensity of satellites of the X-phase are different from those of the intermediate (I-) phase under compressive stress, but they approach those of the I-phase with decreasing stress. That is, the structure change associated with the I → X transformation is discontinuous under a compressive stress, while it is continuous under zero stress. In addition, the transformation from the X-phase to the L21-type parent phase is continuous regardless of applied stress. These results strongly suggest the existence of multi-critical point in Ni2MnGa. On the other hand, the transformation from the X-phase to the martensite phase is discontinuous regardless of applied stress.

You have full access to the following eBook

Info:

[1] P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak: Phil. Mag. B Vol. 49 (1984), p.295.

Google Scholar

[2] V. V. Kokorin, V. A. Chernenko, E. Cesari, J. Pons and C. Segui, J. Phys.: Condens. Matter: Vol. 8 6457 (1996), p.6457.

DOI: 10.1088/0953-8984/8/35/014

Google Scholar

[3] A. Zheludev, S. M. Shapiro, P. Wochner, A. Schwartz, M. Wall and L. E. Tanner: Phys. Rev. B Vol. 51 (1995), p.11310.

Google Scholar

[4] A. Planes, E. Obradó, A. G. Comas and L. Manõsa: Phys. Rev. Lett Vol. 79 (1997), p.3926.

Google Scholar

[5] J. H. Kim, T. Fukuda and T. Kakeshita: Scripta Mater. Vol. 54 (2006), p.585.

Google Scholar

[6] H. Kushida, K. Hata, T. Fukuda, T. Terai and T. Kakeshita: Scripta Mater. Vol. 60 (2009), p.96.

Google Scholar

[7] V. V. Martynov and V. V. Kokorin: J. Phys. (France) III 2, (1992), p.739.

Google Scholar

[8] A. Zheludev, S. M. Shapiro, P. Wochner and L. E. Tanner: Phys. Rev. B Vol. 54 (1996), p.15045.

Google Scholar

[9] J. Pons, V. A. Chernenko, R. Santamarta and E. Cesari: Acta Mater. Vol. 48 (2000), p.3027.

Google Scholar

[10] P. J. Brown, J. Creangle, T. Kanomata, M. Matsumoto, K. U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck: J. Phys.: Condens. Matter Vol. 14 (2002), p.10159.

DOI: 10.1088/0953-8984/14/43/313

Google Scholar

[11] T. Ohba, N. Miyamoto, K. Fukuda, T. Fukuda, T. Kakeshita and K. Kato: Smart Mater. Struct. Vol. 14 (2005) p. S197.

DOI: 10.1088/0964-1726/14/5/004

Google Scholar

[12] L. Righi, F. Albertini, L. Pareti, A. Paoluzi and G. Calestani: Acta Mater. Vol. 55 (2007), p.5237.

DOI: 10.1016/j.actamat.2007.05.040

Google Scholar

[13] H. Kushida, K. Fukuda, T. Terai, T. Fukuda, T. Kakeshita, T. Ohba, T. Osakabe, K. Kakurai and K. Kato, Eur. Phys. J. Special Topics, Vol. 158 (2008), p.87.

DOI: 10.1140/epjst/e2008-00658-2

Google Scholar

[14] H. Kushida, T. Terai, T. Fukuda, T. Kakeshita, T. Osakabe and K. Kakurai: Scripta Mater. Vol. 60 (2009), p.248.

DOI: 10.1016/j.scriptamat.2008.10.018

Google Scholar

[15] J. Worgull, E. Petti and J. Trivisonno: Phys. Rev. B Vol. 54 (1996), p.15695.

Google Scholar

[16] T. Fukuda, H. Kushida, M. Todai, T. Kakeshita and H. Mori: Scripta Mater. DOI: 10. 10. 16/j. scriptamat. 2009. 04. 046.

Google Scholar

[17] K. A. Müller, W. Berlinger and J. C. Slonczewski, Phys. Rev. Lett., Vol. 25 (1970), p.734.

Google Scholar