Consolidation of Cu-nDiamond Nanocomposites: Hot Extrusion vs Spark Plasma Sintering

Article Preview

Abstract:

Due to their interesting properties copper-based materials have been considered appropriate heat-sinks for first wall panels in nuclear fusion devices. The concept of property tailoring involved in the design of metal matrix composites has led to several attempts to use nanodiamond (nDiamond) as reinforcement. In particular, nDiamond produced by detonation has been used to reinforce copper. In the present study, powder mixtures of copper and nDiamond with 20 at. % C were mechanically alloyed (MA) and consolidated via hot extrusion or spark plasma sintering (SPS). The hardness evolutions as well as the structural characterization of as-milled nanocomposite powders and consolidated samples are reported. Density measurements indicate that the consolidation outcome varies significantly with the process used. Transmission electron microscopy (TEM) inspection of the extrusion consolidated sample revealed bonding at the interface between copper and nDiamond particles. The nDiamond size distribution was determined from TEM observations. The results obtained are discussed in terms of consolidation routes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

682-687

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Varandas: Energy Conver. Manag. (2008), p.1803.

Google Scholar

[2] R. Andreani , M. Gasparotto: Fusion Eng. and Design Vol. 61/62 (2002), p.27.

Google Scholar

[3] T. Sano, Y. Murakoshi, H. Takagi, T. Homma, H. Takeishi, M. Mayuzumi: Mater. Trans. JIM Vol. 37 (1996), p.1132.

DOI: 10.2320/matertrans1989.37.1132

Google Scholar

[4] K. Hanada, K. Matsuzaki, T. Sano: J. Mater. Proc. Tech. Vol. 153-54 (2004), p.514.

Google Scholar

[5] V. Livramento, J. B. Correia, N. Shohoji, E. Osawa: Diamond Relat. Mater. Vol. 16 (2007), p.202.

Google Scholar

[6] K. Yamamoto, T. Taguchi, K. Hanada, E. Osawa, M. Inakuma, V. Livramento, J. B. Correia, N. Shohoji: Diam. Rel. Mater. Vol. 16 (2007), p. (2058).

DOI: 10.1016/j.diamond.2007.05.007

Google Scholar

[7] T.S. Srivatsan, B.G. Ravi, A.S. Naruka, M. Petraroli, R. Kalyanaraman, and T.S. Sudarshan: Mater Design Vol. 23 (2002), pp.291-296.

DOI: 10.1016/s0261-3069(01)00078-4

Google Scholar

[8] H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, N. Yoshida: J. Nucl. Mater. Vol. 377 (2008), pp.34-40.

DOI: 10.1016/j.jnucmat.2008.02.055

Google Scholar

[9] J.B. Correia, V. Livramento, N. Shohoji, E. Tresso, K. Yamamoto, T. Taguchi, K. Hanada, E. Ōsawa: Mater. Sci. Forum Vol. 587-588 (2008), p.443.

DOI: 10.4028/www.scientific.net/msf.587-588.443

Google Scholar

[10] M.T. Marques, J.B. Correia, R. Vilar: Rev. Adv. Mater. Sci. Vol. 18 (2008), pp.403-407.

Google Scholar

[11] Information on http: /www. soft-imaging. net.

Google Scholar

[12] American Society for Metals, George F. Vander Voort, ASM International Handbook Committee, in: ASM handbook: Metallography and Microstructures, ASM International, volume 9 (2004).

Google Scholar