Effects of Stacking Faults on High Temperature Creep Behavior in Mg-Y-Zn Based Alloys

Article Preview

Abstract:

Compressive creep behavior of hot-rolled (40%) Mg-Y and Mg-Y-Zn alloys are investigated at 480 ~ 650 K. Creep strength is substantially improved by the simultaneous addition of yttrium and zinc. The minimum creep rate of Mg-0.9mol%Y-0.04mol%Zn (WZ301) alloy decreases to 1/10 lower than that of Mg-1.1mol%Y (W4) alloy at 650 K. Activation energy for creep in W4 and WZ301 alloys are more than 200 kJ/mol at the temperature range of 480 ~ 550 K. These values are higher than the activation energy for self-diffusion coefficient in magnesium (135 kJ/mol). Many stacking faults (planar defects, PDs) are only observed on the basal planes of the matrix in Mg-Y-Zn ternary alloys. Stacking fault energy is considered to decrease by the multiple-addition of yttrium and zinc. The size and density of these planar defects depend on solute content, aging condition. TEM observation has been revealed that the decreasing of the stacking fault energy affects the distribution of dislocations during creep. Many a-dislocations on basal planes are extended significantly. Dislocation motion is restricted significantly by both of these two types of stacking faults (planar type and extended dislocations).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1602-1607

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ahmed, G.W. Lorimer, P. Lyon, R. Pilkington: Magnesium Alloys and Their Applications (1992), p.301.

Google Scholar

[2] W. Henning and B.L. Mordike: Strength of Metals and Alloys, (1985), p.803.

Google Scholar

[3] B.L. Mordike and W. Henning: Magnesium Technology, (1986), p.54.

Google Scholar

[4] M. Ahmed, R. Pilkington, P. Lyon, G.W. Lorimer: Magnesium Alloys and Their Applications, (1992), p.251.

Google Scholar

[5] M. Suzuki, H. Sato, K. Maruyama, H. Oikawa: Mater. Sci. Eng. Vol. A252 (1998), p.248.

Google Scholar

[6] Y. Kawamura, K. Hayashi and A. Inoue: Mater. Trans. Vol. 42 (2001), p.1172.

Google Scholar

[7] E. Abe, Y. Kawamura, K. Hayashi, A. Inoue: Acta Mater., Vol. 50 (2002), p.3845.

Google Scholar

[8] Z. P. Luo, S. Q. Zhang: J. Mater. Sci. Lett., Vol. 19 (2000), p.813.

Google Scholar

[9] M. Yamasaki, T. Ana, S. Yoshimoto, Y. Kawamura: Scripta Mater., Vol. 53(2005), p.799.

Google Scholar

[10] K. Maruyama, M. Suzuki and H. Sato: Metall. Mater. Trans. Vol. 33A (2002), p.875.

Google Scholar

[11] M. Suzuki, T. Kimura, J. Koike, K. Maruyama: Scripta Mater., Vol. 48 (2003) p.997.

Google Scholar

[12] M. Suzuki, T. Kimura, J. Koike, K. Maruyama: Mater. Sci. Forum, Vols. 426-432 (2003), p.593.

Google Scholar

[13] M. Suzuki and K. Maruyama: to be published.

Google Scholar

[14] T. Uesugi and K. Higashi: J. Japan Inst. Light Metals, 54 (2004), 82-89.

Google Scholar

[15] T. V. Dobatkina: Izv. Akad. Nauk SSSR, Met., (1979), p.211.

Google Scholar

[16] M. Suzuki, K. Tsuchida and M. Maruyama: Mater. Sci. Forum, Vols. 561-565 (2007), p.231.

Google Scholar

[17] P. Chiotti: Metall. Trans., Vol. 7A (1976), p.287.

Google Scholar

[18] K. J. Gill: Trans. Metall. Soc. AIME Vol. 227(1963), p.910.

Google Scholar

[19] M. Suzuki, K. Tsuchida and K. Maruyama: Mater. Trans., Vol 49(2008), p.918.

Google Scholar

[20] P. G. Shewmon: Trans. Metall Soc. AIME, Vol. 206(1956), p.918.

Google Scholar

[21] K. Lal: CEA Report R (1967), p.3136.

Google Scholar

[22] S. -I. Fujikawa: J. Japan Inst. Light Met., Vol. 42(1992), p.822.

Google Scholar

[23] B. L. Mordike: Mater. Sci. Eng., Vol. A324(2002), p.103.

Google Scholar

[24] S. S. Vagarali and T. G. Langdon: Acta Met., Vol. 29(1981), p. (1969).

Google Scholar

[25] S. S. Vagarali and T. G. Langdon: Acta Met., Vo. 30(1982), p.1157.

Google Scholar

[26] B. Y. Chirouze, D. M. Schwartz, and J. E. Dorn: Trans. ASM, Vol. 60(1967), p.51.

Google Scholar

[27] J. J. Gilman: Trans. AIME, Vol. 206(1961), p.614.

Google Scholar

[28] E. R. Gilbert, S. A. Duran and A. L . Bement: ASTM STP, Vol. 458(1969), p.210.

Google Scholar

[29] S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo and T. Mohri: Mater. Trans., Vol. 49(2008), p.952.

Google Scholar

[30] C. R. Barrett and O. D. Sherby: Trans. Metall. Soc. AIME, Vol. 233(1965), p.1116.

Google Scholar