Viscosity of Metallic Glass Forming Liquids: Analysis Based on Bond Strength-Coordination Number Fluctuations

Article Preview

Abstract:

A model that describes the viscous behavior in terms of the mean values of the bond strength, the coordination number, and their fluctuations of the structural units that form the melt has been proposed by one of the authors. In the present study, the viscous behavior of several metallic glass forming systems are analyzed by using the model. From the analysis, microscopic information such as the number of bonds that must be broken to observe the viscous flow is obtained. It is also shown that when the magnitudes of energy and coordination number fluctuations are equal, the behavior of the viscosity described by our model corresponds perfectly to the behavior described by the Vogel-Fulcher-Tammann (VFT) equation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1621-1626

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, K. Ohtera, K. Kita and T. Masumoto: Jpn. J. Appl. Phys. Vol. 27 (1988), p. L2248.

Google Scholar

[2] A. Peker and W.L. Johnson: Appl. Phys. Lett. Vol. 63 (1993), p.2342.

Google Scholar

[3] W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. R Vol. 44 (2004), p.45.

Google Scholar

[4] M. Miller and P. Liaw, editors, Bulk Metallic Glasses (Springer, USA 2008).

Google Scholar

[5] Y. Takigawa, J. Kobota, S.W. Chung, H. Tsuda and K. Higashi: Mater. Trans. Vol. 48 (2007), p.1580.

Google Scholar

[6] S. Mechler, G. Schumacher, I. Zizak, M.P. Macht and N. Wanderka: Appl. Phys. Lett. Vol. 91 (2007), p.021907.

DOI: 10.1063/1.2755924

Google Scholar

[7] Y. Kawamura and A. Inoue: Appl. Phys. Lett. Vol. 77 (2000), p.1114.

Google Scholar

[8] G. J. Fan and H.J. Fecht: J. Chem. Phys. Vol. 116 (2002), p.5002.

Google Scholar

[9] M. Aniya and T. Shinkawa: Mater. Trans. Vol. 48 (2007), p.1793.

Google Scholar

[10] M. Aniya: J. Therm. Anal. Cal. Vol. 69 (2002), p.971.

Google Scholar

[11] C. A. Angell: J. Phys. Chem. Solids Vol. 49 (1988), p.863.

Google Scholar

[12] M. Ikeda and M. Aniya, in: Solid State Ionics, edited by B.V.R. Chowdari et al. / Macmillan India (2008), p.409.

Google Scholar

[13] M. Ikeda and M. Aniya: Solid State Ionics, in press.

Google Scholar

[14] G. Adam and J.H. Gibbs: J. Chem. Phys. Vol. 43 (1965), p.139.

Google Scholar

[15] H. Vogel: Phys. Z. Vol. 22 (1921), p.645. / G.S. Fulcher: J. Amer. Ceram. Soc. Vol. 8 (1925), p.339. / G. Tammann and H. Hesse: Z. Anorg. Allg. Chem. Vol. 156 (1926), p.245.

Google Scholar

[16] Y. Zhao, X. Bian, K. Yin, J. Zhou, J. Zhang and X. Hou: Physica B Vol. 349 (2004), p.327.

Google Scholar

[17] L. Shadowspeaker and R. Busch: Appl. Phys. Lett. Vol. 85 (2004), p.2508.

Google Scholar

[18] H. Tanaka: J. Non-Cryst. Solids Vol. 351 (2005), p.678.

Google Scholar

[19] K. L. Ngai: J. Non-Cryst. Solids Vol. 275 (2000), p.7.

Google Scholar