Thermal and Mechanical Properties of the (Cu36Zr48Al8Ag8)100-xSix (x = 0–1) Amorphous Alloys

Article Preview

Abstract:

In this study, (Cu36Zr48Al8Ag8)100-xSix (x = 0–1) amorphous alloy rod with (2~4) mm diameter were prepared by arc melting. The thermal properties and microstructure development during the annealing of amorphous alloys have been investigated by the combination of differential scanning calorimetry (DSC),, X-ray diffractometry (XRD) and Vickers indentation. The XRD result reveals that all these as-quenched, (Cu36Zr48Al8Ag8)100-xSix alloys exhibit the broad diffraction patterns of amorphous phase. A clear Tg (glass transition temperature) and supercooled region (about 102 K) were revealed for all of those amorphous alloy rods. The crystallization temperature (Tx), (ΔTx) , and micro-hardness of (Cu36Zr48Al8Ag8)100-xSix amorphous alloys is increased as the Si content.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1627-1631

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 36 (1995) 391- 398.

Google Scholar

[2] W.L. Johnson, MRS Bull. 24 (10) (1999) 42-56.

Google Scholar

[3] T. Zhang, A. Inoue, Mater. Trans. JIM 39 (1998) 1001-1106.

Google Scholar

[4] T. Zhang, A. Inoue, Mater. Trans. 43 (2002) 708-711.

Google Scholar

[5] W. Zhang, A. Inoue, Mater. Trans. 43 (2002) 2342-2345.

Google Scholar

[6] W. Zhang, A. Inoue, Scripta Mater. 48 (2003) 641-645.

Google Scholar

[7] D. Xu, G. Duan, W.L. Johnson, Acta Mater. 52 (2004) 3493-3496.

Google Scholar

[8] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Mater. 49 (2001)2645-2652.

Google Scholar

[9] A. Inoue, W. Zhang, Mater. Trans. 43 (2002) 2921-2925.

Google Scholar

[10] A. Inoue, W. Zhang, J. Mater. Res. 18 (2003) 1435-1440.

Google Scholar

[11] T. Masumoto, Mater. Sci. Eng. A 179/180 (1994) 8.

Google Scholar

[12] Z.W. Zhu, H.F. Zhang W.S. Sun, B.Z. Ding, Z.Q. Hu, Scr. Mater. 54 (2006) 1145.

Google Scholar

[13] D.C. Hofmann, G. Duan, W.L. Johnson, Scripta Mater. 54 (2006) 1117.

Google Scholar

[14] A. Inoue,W. Zhang, T. Tsurui, A.R. Yavari, A.L. Greer, Philos. Mag. Lett. 85 (2005) 221.

Google Scholar

[15] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Phys. Rev. Lett. 94 (2005) 205501.

Google Scholar

[16] M.B. Tang, D.Q. Zhao, M.X. Pan W.H. Wang, Chin. Phys. Lett. 21 (2004) 901.

Google Scholar

[17] D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, C. Garland, Acta. Mater. 52 (2004) 2621.

Google Scholar

[18] A. Inoue, T. Zhang, H. Koshiba, J. Appl. Phys. 83 (1998) 6326-6328.

Google Scholar

[19] Z.P. Lu, C.T. Liu, Acta Metall. 50 (2002) 3501.

Google Scholar