The Prediction of Glass-Forming Compositions in Metallic Systems - The Development of New Bulk Metallic Glasses

Article Preview

Abstract:

A novel methodology of predicting specific compositions for glass forming alloys based on elemental cluster selection, liquidus lines, atomic packing efficiency and ab initio calculations is presented and discussed. The proposed composition selection model has lead to the discovery of a number of novel, soon to be reported Mg, Cu, Zn and Ag-based bulk metallic glasses. The proposed model may also be used to explain high glass forming ability and physical properties of known BMG compositions and to pin-point new or superior BMG compositions in existing glass forming systems. Further, the aforementioned model shows strong correlations between proposed elemental clusters, glass forming ability and BMG ductility. This model has also shown applicable adaptation to known ceramic oxide glass forming systems.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

1637-1641

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Klement, R.H. Willens, and P. Duwez: Nature Vol. 187 (1960) p.869.

Google Scholar

[2] J.D. Bernal, J. and J. Mason: Nature Vol. 188 (1960) p.910.

Google Scholar

[3] G.D. Scott: Nature Vol. 188 (1960) p.908.

Google Scholar

[4] J.L. Finney: Random packings and the structure of simple liquids I. The geometry of random close packing , Proc. Roy. Soc. A Vol. 319, (1970) p.479.

DOI: 10.1098/rspa.1970.0189

Google Scholar

[5] P.H. Gaskell: J. Non-Cryst. Solids 32 (1979) p.207.

Google Scholar

[6] J.M. Dubois, P.H. Gaskell and G. Le Caer: A model for the structure of metallic glasses based on chemical twinning. Proc. Roy. Soc. A 402, (1985) p.323.

DOI: 10.1016/b978-0-444-86939-5.50137-8

Google Scholar

[7] D. Stockdale: Proc. Roy. Soc. A 152 (1935) p.81.

Google Scholar

[8] W. Hume-Rothery and E. Anderson: Phil. Mag. 5, (1960) p.383.

Google Scholar

[9] A. R. Yavari, Nature Mater. Vol. 4 (2005) p.2.

Google Scholar

[10] D.B. Miracle, W.S. Sanders, and O.N. Senkov: Phil. Mag. A Vol. 83 (2003) p.2409.

Google Scholar

[11] D.B. Miracle, O.N. Senkov, W.S. Sanders, K.L. Kendig: Mat. Sci. and Eng. A, Vol. 375-377 (2004) p.150.

Google Scholar

[12] D.B. Miracle: Nature Mater. Vol. 3, (2004) p.697.

Google Scholar

[13] Q. Wang, J.B. Qiang, J.H. Xia, J. Wu, Y.M. Wang and C. Dong: Intermetallics, Vol. 15 (2007) p.711.

Google Scholar

[14] L. Zhang, Y-Q. Cheng, A-J. Cao, J. Xu and E. Ma: Acta Mat. Vol. 57 (2009) p.1154.

Google Scholar

[15] K. Amiya and A. Inoue: Mater. Trans Vol. 43 (2002) p.81.

Google Scholar

[16] O.N. Senkov, J.M. Scott and D.B. Miracle: J. Alloys & Comp. Vol. 424, Iss. 1-2 (2006) p.394.

Google Scholar

[17] F.S. Guo, J. Poon, X. Gu and G.J. Shiflet: Scripta Mat. Vol. 56 (2007) p.689.

Google Scholar

[18] O.N. Senkov and J.M. Scott: J. Non-Cryst. Sol. Vol. 351 (2005) p.3087.

Google Scholar

[19] E.S. Park and D.H. Kim: J. Mater. Res. Vol. 19, No. 3 (2004) p.685.

Google Scholar

[20] X. Gu and G.J. Shiflet: J. Mater. Res. Vol. 20, No. 8 (2005) p. (1935).

Google Scholar

[21] Q-F. Li, H-R. Weng, Z-Y. Suo, Y-L. Ren, X-G. Yuan, K-Q. Qiu; Mat. Sci. & Eng. A Vol. 487 (2008) p.301.

Google Scholar

[22] K.J. Laws, B. Gun and M. Ferry: Mat. Sci. & Eng. A Vol. 475, Iss 1-2 (2008) p.348.

Google Scholar

[23] K.J. Laws, K.F. Shanlaye, B. Gun, K. Wong and M. Ferry: Submitted to Mat. Trans. A (2009).

Google Scholar