Anisotropic Ostwald Ripening in Silicon Nitride: On the Reaction-Controlled Kinetics

Article Preview

Abstract:

A model for anisotropic Ostwald ripening was developed using a chemical potential (weighted mean curvature) difference as a driving force for mass-transport. Based on this model, grain growth simulations of silicon nitride during the phase transformation and Ostwald ripening were performed. Comparison with experimental results during the phase transformation suggests that grain growth be controlled by interfacial reaction. Simulations of Ostwald ripening predict that the growth exponent be 3 for the reaction-controlled case, and increases up to 5 as the growth kinetics shifts from reaction-controlled to diffusion-controlled. It was reported that the mean aspect ratio of silicon nitride crystals increased during the phase transformation, and decreased during Ostwald ripening. These behaviors were successfully simulated by this model. The concave depression at the tip of silicon nitride crystal that was experimentally observed. Simulations by the Ostwald ripening model demonstrated that it could be developed when the liquid phase was super-saturated, and further that the tip shape was a function of the liquid concentration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2598-2603

Citation:

Online since:

January 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.M. Lifshits and V.V. Slyozov, J. Phys. Chem. Solids, 19 [1-2] 35-50 (1961).

Google Scholar

[2] C. Wagner, Z. Electrochem., 65 [7-8] 581-91 (1961).

Google Scholar

[3] C. M. Hwang, T. -Y. Tien and I. -W. Chen, pp.1034-9 in Sintering '87, edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe, Elsevier Applied Science (1988).

Google Scholar

[4] C.M. Hwang and T. -Y. Tien, Mater. Sci. Forum, 47, 84-109 (1989).

Google Scholar

[5] M. Mitomo, M. Tsutsumi, H. Tanaka, S. Uenosono and F. Saito, J. Am. Ceram. Soc., 73.

Google Scholar

[8] 2441-45 (1990).

Google Scholar

[6] M. Mitomo and S. Uesono, J. Mater. Sci., 26, 3940-44 (1993).

Google Scholar

[7] M. -A. Einarsrud and M. Mitomo, J. Am. Ceram. Soc., 76.

Google Scholar

[6] 1624-26 (1993).

Google Scholar

[8] K. -R. Lai and T. -Y. Tien, J. Am. Ceram. Soc., 76.

Google Scholar

[1] 91-96 (1993).

Google Scholar

[9] D. -D. Lee, S. -J.L. Kang, and D.N. Yoon, J. Am. Ceram. Soc., 71.

Google Scholar

[9] 803-6 (1988).

Google Scholar

[10] M. Krämer, M.J. Hoffmann and G. Petzow, Acta metall. mater., 41.

Google Scholar

[10] 2939-47 (1993).

Google Scholar

[11] M. Krämer, M.J. Hoffmann and G. Petzow, J. Am. Ceram. Soc., 76.

Google Scholar

[11] 2778-84 (1993).

Google Scholar

[12] G. Petzow and M.J. Hoffmann, Material Science Forum, 113-115, 91-102 (1993).

Google Scholar

[13] M.J. Hoffmann, pp.59-72 in Tailoring of Mechanical Properties of Si3N4 Ceramics, Edited by M.J. Hoffmann and G. Petzow, Kluwer Academic Publishers, Netherlands (1994).

DOI: 10.1007/978-94-011-0992-5

Google Scholar

[14] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, Acta mater., 46.

Google Scholar

[18] 6541-50 (1998).

Google Scholar

[15] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, Acta mater., 46.

Google Scholar

[18] 6551-57 (1998).

Google Scholar

[16] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, J. Am. Ceram. Soc. 82.

Google Scholar

[10] 2931-33 (1999).

Google Scholar

[17] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, J. Ceram. Soc. Japan, 107.

Google Scholar

[10] 930-934 (1999).

Google Scholar

[18] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, J. Ceram. Soc. Japan, 107.

Google Scholar

[11] 995-1000 (1999).

Google Scholar

[19] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, J. Am. Ceram. Soc., 83.

Google Scholar

[3] 675-76 (2000).

Google Scholar

[20] M. Kitayama, K. Hirao, M. Toriyama and S. Kanzaki, Acta mater., 48 [18-19] 4635-4640 (2000).

DOI: 10.1016/s1359-6454(00)00250-0

Google Scholar

[21] M. Kitayama, K. Hirao, and S. Kanzaki, J. Am. Ceram. Soc., 89.

Google Scholar

[8] 2612-18 (2006).

Google Scholar

[22] G.W. Greenwood, Acta metall., 4, 243-8 (1956).

Google Scholar

[23] J. E. Taylor, Acta metall. mater., 40.

Google Scholar

[7] 1475-85 (1992).

Google Scholar

[24] W. D. Kingery, H. K. Bowen and D. K. Uhlmann, pp.220-21 in Introduction to Ceramics, John Wiley & Sons, Inc., New York (1976).

Google Scholar

[25] Wang, L. -L., Tien, T. -Y., and Chen, I. -W., J. Am. Ceram. Soc., 1998, 81 (10) 2677.

Google Scholar