On the Influence of Silver Nanoparticles Size in the Electrical Conductivity of PEDOT: PSS

Article Preview

Abstract:

In this paper, we studied the influence of the silver nanoparticles size on the electrical conductivity of PEDOT:PSS in Ag(PEDOT:PSS) films. The silver nanoparticles were synthesized in presence of PEDOT:PSS by varying the molar ratio between AgNO3 and the reducing agent (NaBH4). Both the particle size determined by TEM and the plasmon band obtained by UV-Vis spectroscopy were found to be strongly dependent on the reducing agent concentration. The electrical conductivity increases inversely with the concentration of reducing agent from 5.24 x 10-4 up to 1.63 S/cm; three orders of magnitude higher than pristine PEDOT:PSS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Groenendaal, F. Jonas, D. Freitag, H. Peelartzik, J.R. Reynolds: Adv. Mater. 7 (200) 481.

Google Scholar

[2] S. G. Im, K.K. Gleason: Macromol. 40 (2007) 6552.

Google Scholar

[3] L.A.A. Patterson, S. Ghosh, O. Inganäs: Org. Electron. 3 (2002) 143.

Google Scholar

[4] J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo: Synth. Met. 126 (2002) 311.

Google Scholar

[5] W. H. Kim, A. J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, Z. H. Kafafi: Appl. Phys. Lett. 80 (2002) 3844.

DOI: 10.1063/1.1480100

Google Scholar

[6] S.K.M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W.D. van der Gon, W.R. Salaneck, M. Fahlman: Synth. Met. 139 (2003) 1.

DOI: 10.1016/s0379-6779(02)01259-6

Google Scholar

[7] J. Ouyang, Q. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinar: Polym. 45 (2004) 8443.

Google Scholar

[8] T.K. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay: Chem. Comm. (2002) 1048.

Google Scholar

[9] S.K. Pillalamarri, F.D. Blum, A.T. Tokuhiro, M.F. Bertino: Chem. Mater. 17 (2005) 5941.

Google Scholar

[10] T.K. Sarma, D. Chowdhury: J. Phys. Chem. A 108 (2004) 7837.

Google Scholar

[11] K. J. Moreno, I. Moggio, E. Arias, I. Llanera, S. E. Moya, R. F. Ziolo, H. Barrientos: J. Nanosci. Nanotechnol. 9 (2009) 3987.

Google Scholar

[12] S.S. Kumar, C.S. Kumar, J. Mathiyarasu, K.L. Phani: Langmuir 23, (2007) 3401.

Google Scholar

[13] D.L. Vav Hyning, C.F. Zukoski: Langmuir 17 (1998) 7034.

Google Scholar

[14] A.G. Manoj, Namboothiry, T. Zimmerman, F.M. Coldren: Synth. Met. 157 (2007) 580. M.A.G. Namboothiry, T. Zimmerman, F.M. Coldren, J. Liu, K. Kim, D.L. Carroll: Synth. Met. 157 (2007), 580.

DOI: 10.1016/j.synthmet.2007.06.006

Google Scholar

[15] S. Ghosh, J. Rasmusson, O. Inganäs: Adv. Mater. 10 (1998) 1097.

Google Scholar

[16] K.L. Kelly, E. Coronado, Zhao. L.L. Schatz, G.C.: J. Phys. Chem. B 107 (2003) 668.

Google Scholar

[17] S.M. Heard, F. Grieser, C.G. Barraclough, V.J. Sanders: J. Colloid Interface Sci. 93 (1983) 545.

Google Scholar

[18] J.C. Gustafsson, B. Liedberg, O. Inganas, Solid State Ionics 69 (1994) 145.

Google Scholar

[19] D.D. Evanoff Jr., G. Chumanov, Chem. Phys. Chem. 6 (2005) 1221.

Google Scholar

[20] P.V. Kamat, J. Phys. Chem. B 106 (2002) 7729.

Google Scholar

[21] J.J. Mock, D.R. Smith, S. Schultz, Nano. Lett. 3 (2003) 485.

Google Scholar

[22] L. Groenendaal, G. Zotti, F. Jonas: Synth. Met. 118 (2001) 105.

Google Scholar