Measuring Type II Stresses Using 3DXRD

Article Preview

Abstract:

An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors including error estimation and outlier rejection. As examples of use results from two experiments – one on interstitial free (IF) steel and one on copper – will be presented. In the first experiment 96 grains in one layer of IF steel were monitored during elastic loading and unloading. Very consistent results were obtained, with resolutions for each grain of approximately 10 μm in position, 0.05˚ in orientation and 80 μstrain. When averaging over all grains a resolution of 10 μstrain was obtained. In the second experiment it was demonstrated that the strain states of more than 1000 grains in a plastically deformed Cu specimen could be determined to an accuracy of 100 μstrain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-69

Citation:

Online since:

May 2010

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. F. Poulsen: Three-Dimensional X-ray Diffraction Microscopy (Springer 2004).

Google Scholar

[2] S. Schmidt, S. F. Nielsen, C. Gundlach, L. Margulies, X. Huang and D. Juul Jensen: Science 305 (2004), p.229.

Google Scholar

[3] D. Juul Jensen, E. M. Lauridsen, L. Margulies, H. F. Poulsen, S. Schmidt, H. O. Sørensen and G. M. B. Vaughan: Materials Today 9 (2006), p.18.

DOI: 10.1016/s1369-7021(05)71334-1

Google Scholar

[4] I. C. Noyan and J. B. Cohen: Residual Stress (Springer 1987).

Google Scholar

[5] A. A. MacDowell, R. S. Celeste, N. Tamura, R. Spolenak, B. C. Valek, W. L. Brown, J. C. Bravman, H. A. Padmore, B. W. Batterman and J. R. Patel: Nucl. Instr. Meth. Phys. Res. A (2001), p.467.

DOI: 10.1557/proc-673-p7.7

Google Scholar

[6] B. C. Larson, W. Yang, G. E. Ice, J. D. Budau and T. Z. Tischler: Nature 415 (2002), p.887.

Google Scholar

[7] R. V. Martins, L. Margulies, S. Schmidt, H. F. Poulsen and T. Leffers: Mater. Sci. Eng. A 387389 (2004), p.84.

Google Scholar

[8] U. Lienert, T. -S. Han, J. Almer, P. R. Dawson, T. Leffers, L. Margulies, S. F. Nielsen, H. F. Poulsen and S. Schmidt: Acta Mater. 52 (2004), p.4461.

DOI: 10.1016/j.actamat.2004.05.051

Google Scholar

[9] C. C. Aydiner, J. V. Bernier, B. Clausen, U. Lienert, C. N. Tomé and D. W. Brown: Phys. Rev. B 80 (2009), p.024113.

Google Scholar

[10] http: /sourceforge. net/apps/trac/fable/wiki.

Google Scholar

[11] S. Schmidt: in preparation (2010).

Google Scholar

[12] A. Lyckegaard, E. M. Lauridsen, W. Ludwig, R. W. Fonda and H. F. Poulsen: Adv. Eng. Mater. (2009), in press.

Google Scholar

[13] J. Oddershede, S. Schmidt, H. F. Poulsen, H. O. Sørensen, J. Wright and W. Reimers: submitted to J. Appl. Cryst. (2009).

Google Scholar

[14] R. Baruzzo, A. Stevanato, G. V. Lamanna, G. M. B. Vaughan, J. P. Wright, A. Bytchkov, C. Curfs, C. Gundlach, M. Rossat and T. Buslaps: Nucl. Instr. Meth. Phys. Res. A (2009), in press.

Google Scholar