Combined Field and Thermionic Emission Process in ZnO Nanostructure Cold Emission Cathode

Article Preview

Abstract:

With recent research, the author intends to outline the framework of the field emission of ZnO nanostructures. However, many groups’ reports ignored the thermionic emission process in the low electric field. A recently published field emission cathode parameter extraction method [X. He et al., J. Appl. Phys. 102, 056107(2007)] provided unambiguous and reliable cathode. The method utilized Richardson-Laue-Dushman law in low electric field and Fowler-Norheim equation in high electric field to solve a one-dimensional model including both thermionic and field emission. The model gave a much better agreement with the experimental data of ZnO cathode under the applied field and acquired a revised surface field enhancement factors and work function of ZnO cathode in the electron emission process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1138-1141

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, Q. L. Liao, Nanoscience 11, 265 (2006).

Google Scholar

[2] F. Fang, J. Futter, A. Markwitz et al., Nanotechnology 20, 245502-1 (2009).

Google Scholar

[3] Z. L. Wang and J. H. Song, Science 312, 5 (2006).

Google Scholar

[4] Y. H. Huang, X. D. Bai, Y. Zhang et al., J. Phys.: Condens. Matter 19, 176001-1 (2007).

Google Scholar

[5] Y. H. Huang, Y. Zhang, Y. S. Gu et al., J. Physical Chemistry C 111, 9039 (2007).

Google Scholar

[6] K. B. Zheng, H. T. Shen, J. L. Li et al., Vacuum 83, 261 (2009).

Google Scholar

[7] Q. H. Li, Q. Wan, Y. J. Chen and T. H. Wang, Appl. Phys. Lett. 85, 636 (2004).

Google Scholar

[8] C. Li, K. Hou, X. X. Yang et al., Appl. Phys. Lett. 93, 233508-1 (2008).

Google Scholar

[9] J. Chen, W. Lei, W. Q. Chai et al., Solid-State Electronics 52, 294 (2008).

Google Scholar

[10] Z. H. Chen, Y. B. Tang, C. P. Liu et al., J. Phys. Chem. C 113, 13433 (2009).

Google Scholar

[11] S. F. Wei, J.S. Lian, and Q. Jiang, Appl. Sur. Sci. 255, 7 (2009).

Google Scholar

[12] X. H. Zhang, Y. Q. Chen, C. Jia et al., J. Phys. Chem. C 113, 13689 (2009).

Google Scholar

[13] S. Xu, C. S. Lao, B. Weintraub et al., J. Mater. Res. 23, 6 (2008).

Google Scholar

[14] B. Ha and C. J. Lee, Appl. Phys. Lett. 90, 023108 (2007).

Google Scholar

[15] X. He, J. Scharer, J. Booske and S. Sengele, J. Vac. Sci. Technol. B 26, 770 (2008).

Google Scholar

[16] X. He, J. Scharer, J. Booske and S. Sengele, J. Appl. Phys. 102, 056107-1 (2007).

Google Scholar

[17] R. G. Forbes, J. Vac. Sci. Technol. B 17, 536 (1999).

Google Scholar

[18] E. L. Murphy and R. H. Dood. Physi. Rev. 102, 1464 (1956).

Google Scholar