The Characterization and Gas Sensing Properties of Polythiophene Coated V2O5 Nanotubes

Article Preview

Abstract:

Polythiophene (PTP) coated V2O5 nanotubes were prepared by an in-situ polymerization of thiophene monomers in the presence of prepared V2O5 nanotubes. The nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which proved the polymerization of thiophene monomer and the strong interaction between polythiophene and V2O5 nanotubes (VONTs). The gas sensing properties of PTP coated V2O5 nanotubes were studied at room temperature, which was found that PTP coated V2O5 nanotubes could detect ethanol with much higher sensitivity than pure VONTs. The sensing mechanism of PTP coated V2O5 nanotubes to ethanol is presumed to be the synergetic interaction between polythiophene (PTP) and V2O5 nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1154-1157

Citation:

Online since:

June 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally and P. Yang: Science Vol. 305 (2004), p.269.

Google Scholar

[2] Z.F. Li, M.T. Swihart and E. Ruchenstein: Langmuir Vol. 20 (2004), p. (1963).

Google Scholar

[3] Y. Huang, X.F. Duan and C.M. Lieber: Small Vol. 1 (2005), p.142.

Google Scholar

[4] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero and G. Sberveglieri: Prog. Mater. Sci. Vol. 54 (2009), p.1.

Google Scholar

[5] E. Comini, L. Yubao, Y. Brando and G. Sbervegliere: Chem. Phys. Lett. Vol. 407 (2005), p.368.

Google Scholar

[6] C.Q. Ge, Z.K. Bai, M.L. Hu, D.W. Zeng, S.Z. Cai and C.S. Xie: Mater. Lett. Vol. 62 (2008), p. (2037).

Google Scholar

[7] H.J. Kharat, K.P. Kakde, P.A. Savale, K. Datta, P. Ghosh and M.D. Shirsat: Polym. Adv. Technol. Vol. 18 (5) (2007), p.397.

DOI: 10.1002/pat.903

Google Scholar

[8] T.M. Wu, H.L. Chang and Y.W. Lin: Compos. Sci. Techol. Vol. 69 (2009), p.639.

Google Scholar

[9] Q.L. Cheng, V. Pavlinek, Y. He, C.Z. Li and P. Saha: Collid. Poly. Sci. Vol. 287 (2009), p.435.

Google Scholar

[10] L.F. He, Y. Jia, F.L. Meng, M.Q. Li and J.H. Liu: Mater. Sci. Eng. B Vol. 163 (2009), p.76.

Google Scholar

[11] L.Q. Mai, W. Chen, Q. Xu, Q.Y. Zhu, C.H. Han and J.F. Peng: Solid State Commun. Vol. 126 (2003), p.541.

Google Scholar

[12] W. Jin, B.T. Dong, W. Chen, C.X. Zhao, L.Q. Mai and Y. Dai: Sens. Actuators B Vol. 145 (2010), p.211.

Google Scholar

[13] W. Chen, J.F. Peng, L.Q. Mai, Q.Y. Zhu and Q. Xu: Mater. Lett. Vol. 58 (2004), p.2275.

Google Scholar

[14] F.H. Kong, Y. Wang, J. Zhang, H.J. Xia, B.L. Zhu, Y.M. Wang, S.R. Wang and S.H. Wu: Mater. Sci. Eng. B Vol. 150 (2008), p.6.

Google Scholar

[15] H.M. Wang, G.Q. Tang, S. S Jin, C.X. Bian, F.F. Han, D. Liang and C.X. Xu: Acta Chim. Sinica Vol. 65 (21) (2007), p.2454.

Google Scholar