Investigation on the Plasma-Induced Electron Emission Properties of ZnO Nanorod and Carbon Nanotube Arrays

Article Preview

Abstract:

The plasma-induced emission properties of ZnO nanorod and carbon nanotube (CNT) arrays were investigated under the pulse electric field. The formation of plasma on the array surface was found and high intensity electron beams were obtained from the two kinds of arrays. The plasma-induced emission properties of the ZnO nanorod and CNT arrays have big differences. Under the same electric field, the CNT arrays have higher emission current than the ZnO nanorod arrays. With the emission currents changing, the electron emissions of the ZnO nanorod arrays always are very uniform; but that of the CNT arrays are non-uniform. The plasma expansion velocity of the ZnO nanorod arrays is lower than that of the CNT arrays. Accordingly, the emission stability of the ZnO nanorod arrays is better than that of the CNT arrays.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1150-1153

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. B. Miller: J. Appl. Phys. Vol. 84 (1998) p.3880.

Google Scholar

[2] Y. E. Krasik, A. Dunaevsky, A. Krokhmal, J. Felsteiner, A. V. Gunin, I. V. Pegel, and S. D. Korovin: J. Appl. Phys. Vol. 89 (2001) p.2379.

DOI: 10.1063/1.1337924

Google Scholar

[3] D. Shiffle, M. LaCour, K. Golby, M. Sena, M. Mitchell, M. Haworth, K. Hendricks, and T. Spencer: IEEE Tran. Plas. Sci. Vol. 29 (2001) p.445.

Google Scholar

[4] Y. M. Saveliev, W. Sibbett, and D. M. Parkes: J. Appl. Phys. Vol. 94 (2003) p.5776.

Google Scholar

[5] Q. Liao, Y. Zhang, J. Qi, Y. Huang, L. Xia, Z. Gao, and Y. Gu: J. Phys. D: Appl. Phys. Vol. 40 (2007) p.3456.

Google Scholar

[6] Y. Huang, Y. Zhang, Y. Gu, X. Bai, J. Qi, Q. Liao, and J. Liu: J. Phys. Chem. C. Vol. 111 (2007) p.9039.

Google Scholar

[7] S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai: Science Vol. 283 (1999) p.512.

Google Scholar

[8] J. Liu, J. She, S. Deng, J. Chen, and N. Xu: J. Phys. Chem. C. Vol. 112 (2008) p.11685.

Google Scholar

[9] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu, and W. Huang: Appl. Phys. Lett. Vol. 88 (2006) p.213102.

Google Scholar

[10] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu: Appl. Phys. Lett. Vol. 86 (2005) p.203115.

Google Scholar

[11] L. Vayssieres: Adv. Mater. Vol. 15 (2003) p.464.

Google Scholar

[12] X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, T. Zhang, Q. Li, and S. Fan: Adv. Mater. Vol. 18 (2006) p.1505.

Google Scholar

[13] A. M. Fennimore, L. T. Cheng, D. H. Roach, G. A. M. Reynolds, R. R. Getty, and A. Krishnan: Appl. Phys. Lett. Vol. 92 (2008) p.103104.

DOI: 10.1063/1.2892657

Google Scholar