Monte Carlo Simulation of Thermophysical Properties for Al-Ce Liquid Alloys

Article Preview

Abstract:

The Monte Carlo method with EAM potential is applied to simulate the liquid Al-Ce binary alloy system and the thermophysical properties including surface tension (), viscosity () and diffusion coefficient (D) of liquid Al-8at%Ce alloy are determined. The simulated  values decrease with temperature. Based on the relationship between ,  and D, the various viscosity and diffusion coefficient of liquid Al-Ce alloys under different temperatures were determined. The comparison of the simulated results with some experimental measurements is performed and discussed, indicating that the simulation method and EAM parameters in simulation are acceptable. The dependence of viscosity and diffusion coefficient of liquid Al-Ce alloys on temperature is established to be helpful in further investigation of amorphrization ability of Al-Ce alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1404-1407

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue: Prog. Mater. Sci. Vol. 43 (1998), p.265.

Google Scholar

[2] Q. Zang, S. W. Ma, Y. R. Zhang, S. Z. Liu, T. Zhu: J. Alloys Comp. Vol. 480 (2009), p.987.

Google Scholar

[3] A. Griesche, M. P. Macht, G. Frohberg: J. Non-Cryst. Solids Vol. 353 (2007), p.3305.

Google Scholar

[4] Y. G. Li, Y. Y. Wu, Zh. Qian, X. F. Liu: Mater. Sci. Eng. A Vol. 527 (2009), p.146.

Google Scholar

[5] M. Durán, E. Ortega-Torres, J. Rappaz: Mathematical and Computer Modelling Vol. 42 (2005), p.1269.

Google Scholar

[6] J. Drápala, P. Kubíček, O. Vlach: Mathematics and computer in Simulation (2010), in press.

Google Scholar

[7] X. M. Tao, Y. F. Ouyang, H. S. Liu, F. J. Zeng, Y. P. Feng, Zh. P. Jin: Physica B: Condensed Matter Vol. 399 (2007), p.27.

Google Scholar

[8] N. Wang, X. J. Han, and B. Wei: Appl. Phys. Lett. Vol. 80 (2002), p.28.

Google Scholar

[9] L. Fang, F. Xiao, Y. F. Wang, Z. N. Tao, K. MuKai: Mater. Sci. Eng. B Vol. 132 (2006), p.174.

Google Scholar

[10] H. P. Wang, W. J. Yao, C. D. Cao, and B. Wei: Appl. Phys. Lett. Vol. 85 (2004), p.3414.

Google Scholar

[11] Y. F. Ouyang, X. P. Xia, X. M. Tao: Mater. Sci. Forum Vol. 52 (2005), p.57.

Google Scholar

[12] F. Fang, M. Q. Zeng, X. Z. Che, M. Zhu: J. Alloys & Comp. Vol. 340 (2002), p.252.

Google Scholar

[13] Y. Tsuchiya: J. Phys.: Condens. Matter Vol. 3 (1991), p.3163.

Google Scholar

[14] R. N. Singh, R. P. Jaju, I. Ali: Physica B Vol. 299 (2001), p.108.

Google Scholar

[15] W. J. Yao, F. P. Dai, and B. Wei: Philosophical Magzine Letters Vol. 87 (2007), p.613.

Google Scholar

[16] I. Egry: Scr. Metall. Mater. Vol. 28 (1993), p.1273.

Google Scholar

[17] T. Gaskell: J. Non-Cryst. Solids Vol. 61/62 (1984), p.913.

Google Scholar

[18] W. F. Gale, T. C. Totemeir, Smithells Metals Reference Book, 8th Edition, Butterworth.

Google Scholar

[19] S. Mukherjee, Zh. H. Zhou, W. L. Johnson and W. K. Rhim: J. Non-Cryst. Solids Vol. 337 (2004), p.21.

Google Scholar

[20] W. J. Yao and N. Wang: J. Phys. D: Appl. Phys. Vol. 41 (2008), p.225403.

Google Scholar

[21] B. Sun, X. Bian, J. Hu, T. Mao, Y. Zhang: Mater. Characterization Vol. 59 (2008), p.820.

Google Scholar